Mathematical Modelling with Differential Equations

· CRC Press
Ebook
284
pagine
Idoneo
Valutazioni e recensioni non sono verificate  Scopri di più

Informazioni su questo ebook

Mathematical Modelling with Differential Equations aims to introduce various strategies for modelling systems using differential equations. Some of these methodologies are elementary and quite direct to comprehend and apply while others are complex in nature and require thoughtful, deep contemplation. Many topics discussed in the chapter do not appear in any of the standard textbooks and this provides users an opportunity to consider a more general set of interesting systems that can be modelled. For example, the book investigates the evolution of a "toy universe," discusses why "alternate futures" exists in classical physics, constructs approximate solutions to the famous Thomas—Fermi equation using only algebra and elementary calculus, and examines the importance of "truly nonlinear" and oscillating systems.

Features
  • Introduces, defines, and illustrates the concept of "dynamic consistency" as the foundation of modelling.
  • Can be used as the basis of an upper-level undergraduate course on general procedures for mathematical modelling using differential equations.
  • Discusses the issue of dimensional analysis and continually demonstrates its value for both the construction and analysis of mathematical modelling.

Informazioni sull'autore

Ronald E. Mickens is an Emeritus Professor at Clark Atlanta University, Atlanta, GA, and is a Fellow of several professional organizations, including the American Physical Society. He has written or edited seventeen books and published more than 350 peer-reviewed research articles.

Valuta questo ebook

Dicci cosa ne pensi.

Informazioni sulla lettura

Smartphone e tablet
Installa l'app Google Play Libri per Android e iPad/iPhone. L'app verrà sincronizzata automaticamente con il tuo account e potrai leggere libri online oppure offline ovunque tu sia.
Laptop e computer
Puoi ascoltare gli audiolibri acquistati su Google Play usando il browser web del tuo computer.
eReader e altri dispositivi
Per leggere su dispositivi e-ink come Kobo e eReader, dovrai scaricare un file e trasferirlo sul dispositivo. Segui le istruzioni dettagliate del Centro assistenza per trasferire i file sugli eReader supportati.