Mathematical Modelling of Physical Systems

· Springer
E-bok
505
Sider
Vurderinger og anmeldelser blir ikke kontrollert  Finn ut mer

Om denne e-boken

Comprehensive and thorough, this monograph emphasizes the main role differential geometry and convex analysis play in the understanding of physical, chemical, and mechanical notions. Central focus is placed on specifying the agreement between the functional framework and its physical necessity and on making clear the intrinsic character of physical elements, independent from specific charts or frames. The book is divided into four sections, covering thermostructure, classical mechanics, fluid mechanics modelling, and behavior laws. An extensive appendix provides notations and definitions as well as brief explanation of integral manifolds, symplectic structure, and contact structure. Plenty of examples are provided throughout the book, and reviews of basic principles in differential geometry and convex analysis are presented as needed. This book is a useful resource for graduate students and researchers in the field.

Om forfatteren

Michel Cessenat is a mathematician at the Société de Mathématiques Appliquées et Industrielles and a former researcher at Center for Atomic Energy, France. He is the author of Mathematical Methods in Electromagnetism: Linear Theory and Applications (World Scientific, 1996) and a co-author of Méthodes Probabilistes pour les équations de la physique (Eyrolles, 1989). He has also made contributions to the work presented in the six-volume set Mathematical Analysis and Numerical Methods for Science and Technology by Robert Dautray and Jacques-Louis Lions (Springer, 2000).

Vurder denne e-boken

Fortell oss hva du mener.

Hvordan lese innhold

Smarttelefoner og nettbrett
Installer Google Play Bøker-appen for Android og iPad/iPhone. Den synkroniseres automatisk med kontoen din og lar deg lese både med og uten nett – uansett hvor du er.
Datamaskiner
Du kan lytte til lydbøker du har kjøpt på Google Play, i nettleseren på datamaskinen din.
Lesebrett og andre enheter
For å lese på lesebrett som Kobo eReader må du laste ned en fil og overføre den til enheten din. Følg den detaljerte veiledningen i brukerstøtten for å overføre filene til støttede lesebrett.