Mathematical Modelling of Physical Systems

· Springer
E-boek
505
Pagina's
Beoordelingen en reviews worden niet geverifieerd. Meer informatie

Over dit e-boek

Comprehensive and thorough, this monograph emphasizes the main role differential geometry and convex analysis play in the understanding of physical, chemical, and mechanical notions. Central focus is placed on specifying the agreement between the functional framework and its physical necessity and on making clear the intrinsic character of physical elements, independent from specific charts or frames. The book is divided into four sections, covering thermostructure, classical mechanics, fluid mechanics modelling, and behavior laws. An extensive appendix provides notations and definitions as well as brief explanation of integral manifolds, symplectic structure, and contact structure. Plenty of examples are provided throughout the book, and reviews of basic principles in differential geometry and convex analysis are presented as needed. This book is a useful resource for graduate students and researchers in the field.

Over de auteur

Michel Cessenat is a mathematician at the Société de Mathématiques Appliquées et Industrielles and a former researcher at Center for Atomic Energy, France. He is the author of Mathematical Methods in Electromagnetism: Linear Theory and Applications (World Scientific, 1996) and a co-author of Méthodes Probabilistes pour les équations de la physique (Eyrolles, 1989). He has also made contributions to the work presented in the six-volume set Mathematical Analysis and Numerical Methods for Science and Technology by Robert Dautray and Jacques-Louis Lions (Springer, 2000).

Dit e-boek beoordelen

Geef ons je mening.

Informatie over lezen

Smartphones en tablets
Installeer de Google Play Boeken-app voor Android en iPad/iPhone. De app wordt automatisch gesynchroniseerd met je account en met de app kun je online of offline lezen, waar je ook bent.
Laptops en computers
Via de webbrowser van je computer kun je luisteren naar audioboeken die je hebt gekocht op Google Play.
eReaders en andere apparaten
Als je wilt lezen op e-ink-apparaten zoals e-readers van Kobo, moet je een bestand downloaden en overzetten naar je apparaat. Volg de gedetailleerde instructies in het Helpcentrum om de bestanden over te zetten op ondersteunde e-readers.