Mathematical Modelling of Physical Systems

· Springer
E-boek
505
Bladsye
Graderings en resensies word nie geverifieer nie. Kom meer te wete

Meer oor hierdie e-boek

Comprehensive and thorough, this monograph emphasizes the main role differential geometry and convex analysis play in the understanding of physical, chemical, and mechanical notions. Central focus is placed on specifying the agreement between the functional framework and its physical necessity and on making clear the intrinsic character of physical elements, independent from specific charts or frames. The book is divided into four sections, covering thermostructure, classical mechanics, fluid mechanics modelling, and behavior laws. An extensive appendix provides notations and definitions as well as brief explanation of integral manifolds, symplectic structure, and contact structure. Plenty of examples are provided throughout the book, and reviews of basic principles in differential geometry and convex analysis are presented as needed. This book is a useful resource for graduate students and researchers in the field.

Meer oor die skrywer

Michel Cessenat is a mathematician at the Société de Mathématiques Appliquées et Industrielles and a former researcher at Center for Atomic Energy, France. He is the author of Mathematical Methods in Electromagnetism: Linear Theory and Applications (World Scientific, 1996) and a co-author of Méthodes Probabilistes pour les équations de la physique (Eyrolles, 1989). He has also made contributions to the work presented in the six-volume set Mathematical Analysis and Numerical Methods for Science and Technology by Robert Dautray and Jacques-Louis Lions (Springer, 2000).

Gradeer hierdie e-boek

Sê vir ons wat jy dink.

Lees inligting

Slimfone en tablette
Installeer die Google Play Boeke-app vir Android en iPad/iPhone. Dit sinkroniseer outomaties met jou rekening en maak dit vir jou moontlik om aanlyn of vanlyn te lees waar jy ook al is.
Skootrekenaars en rekenaars
Jy kan jou rekenaar se webblaaier gebruik om na oudioboeke wat jy op Google Play gekoop het, te luister.
E-lesers en ander toestelle
Om op e-inktoestelle soos Kobo-e-lesers te lees, moet jy ’n lêer aflaai en dit na jou toestel toe oordra. Volg die gedetailleerde hulpsentrumaanwysings om die lêers na ondersteunde e-lesers toe oor te dra.