Mathematical Logic: Edition 3

· ·
· Graduate Texts in Mathematics Book 291 · Springer Nature
eBook
304
Pages
Ratings and reviews aren’t verified  Learn more

About this eBook

This textbook introduces first-order logic and its role in the foundations of mathematics by examining fundamental questions. What is a mathematical proof? How can mathematical proofs be justified? Are there limitations to provability? To what extent can machines carry out mathematical proofs? In answering these questions, this textbook explores the capabilities and limitations of algorithms and proof methods in mathematics and computer science.

The chapters are carefully organized, featuring complete proofs and numerous examples throughout. Beginning with motivating examples, the book goes on to present the syntax and semantics of first-order logic. After providing a sequent calculus for this logic, a Henkin-type proof of the completeness theorem is given. These introductory chapters prepare the reader for the advanced topics that follow, such as Gödel's Incompleteness Theorems, Trakhtenbrot's undecidability theorem, Lindström's theorems on the maximality of first-order logic, and results linking logic with automata theory. This new edition features many modernizations, as well as two additional important results: The decidability of Presburger arithmetic, and the decidability of the weak monadic theory of the successor function.

Mathematical Logic is ideal for students beginning their studies in logic and the foundations of mathematics. Although the primary audience for this textbook will be graduate students or advanced undergraduates in mathematics or computer science, in fact the book has few formal prerequisites. It demands of the reader only mathematical maturity and experience with basic abstract structures, such as those encountered in discrete mathematics or algebra.

About the author

Heinz-Dieter Ebbinghaus is Professor Emeritus at the Mathematical Institute of the University of Freiburg. His work spans fields in logic, such as model theory and set theory, and includes historical aspects.

Jörg Flum is Professor Emeritus at the Mathematical Institute of the University of Freiburg. His research interests include mathematical logic, finite model theory, and parameterized complexity theory.

Wolfgang Thomas is Professor Emeritus at the Computer Science Department of RWTH Aachen University. His research interests focus on logic in computer science, in particular logical aspects of automata theory.

Rate this eBook

Tell us what you think.

Reading information

Smartphones and tablets
Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.
Laptops and computers
You can listen to audiobooks purchased on Google Play using your computer's web browser.
eReaders and other devices
To read on e-ink devices like Kobo eReaders, you'll need to download a file and transfer it to your device. Follow the detailed Help Centre instructions to transfer the files to supported eReaders.