Mathematical Aspects of Deep Learning

·
· Cambridge University Press
eBook
494
Pages
Ratings and reviews aren’t verified  Learn more

About this eBook

In recent years the development of new classification and regression algorithms based on deep learning has led to a revolution in the fields of artificial intelligence, machine learning, and data analysis. The development of a theoretical foundation to guarantee the success of these algorithms constitutes one of the most active and exciting research topics in applied mathematics. This book presents the current mathematical understanding of deep learning methods from the point of view of the leading experts in the field. It serves both as a starting point for researchers and graduate students in computer science, mathematics, and statistics trying to get into the field and as an invaluable reference for future research.

About the author

Philipp Grohs is Professor of Applied Mathematics at the University of Vienna and Group Leader of Mathematical Data Science at the Austrian Academy of Sciences.

Gitta Kutyniok is Bavarian AI Chair for Mathematical Foundations of Artificial Intelligence at Ludwig-Maximilians Universität München and Adjunct Professor for Machine Learning at the University of Tromsø.

Rate this eBook

Tell us what you think.

Reading information

Smartphones and tablets
Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.
Laptops and computers
You can listen to audiobooks purchased on Google Play using your computer's web browser.
eReaders and other devices
To read on e-ink devices like Kobo eReaders, you'll need to download a file and transfer it to your device. Follow the detailed Help Centre instructions to transfer the files to supported eReaders.