Mathematical Analysis: Linear and Metric Structures and Continuity

· Springer Science & Business Media
E-grāmata
466
Lappuses
Atsauksmes un vērtējumi nav pārbaudīti. Uzzināt vairāk

Par šo e-grāmatu

One of the fundamental ideas of mathematical analysis is the notion of a function; we use it to describe and study relationships among variable quantities in a system and transformations of a system. We have already discussed real functions of one real variable and a few examples of functions of several variables but there are many more examples of functions that the real world, physics, natural and social sciences, and mathematics have to offer: (a) not only do we associate numbers and points to points, but we as- ciate numbers or vectors to vectors, (b) in the calculus of variations and in mechanics one associates an - ergy or action to each curve y(t) connecting two points (a, y(a)) and (b,y(b)): b Lea ~(y) - / 9 F(t, y(t), y' (t))dt t. J a in terms of the so-called Lagrangian F(t, y, p), (c) in the theory of integral equations one maps a function into a new function b /1, d-r / o. J a by means of a kernel K(s, T), (d) in the theory of differential equations one considers transformations of a function x(t) into the new function t t f f( a where f(s, y) is given. 1 in M. Giaquinta, G. Modica, Mathematical Analysis. Functions of One Va- able, Birkh~user, Boston, 2003, which we shall refer to as [GM1] and in M. G- quinta, G. Modica, Mathematical Analysis. Approximation and Discrete Processes, Birkhs Boston, 2004, which we shall refer to as [GM2].

Novērtējiet šo e-grāmatu

Izsakiet savu viedokli!

Informācija lasīšanai

Viedtālruņi un planšetdatori
Instalējiet lietotni Google Play grāmatas Android ierīcēm un iPad planšetdatoriem/iPhone tālruņiem. Lietotne tiks automātiski sinhronizēta ar jūsu kontu un ļaus lasīt saturu tiešsaistē vai bezsaistē neatkarīgi no jūsu atrašanās vietas.
Klēpjdatori un galddatori
Varat klausīties pakalpojumā Google Play iegādātās audiogrāmatas, izmantojot datora tīmekļa pārlūkprogrammu.
E-lasītāji un citas ierīces
Lai lasītu grāmatas tādās elektroniskās tintes ierīcēs kā Kobo e-lasītāji, nepieciešams lejupielādēt failu un pārsūtīt to uz savu ierīci. Izpildiet palīdzības centrā sniegtos detalizētos norādījumus, lai pārsūtītu failus uz atbalstītiem e-lasītājiem.