Mathematical Analysis: Linear and Metric Structures and Continuity

· Springer Science & Business Media
E-book
466
Pages
Les notes et avis ne sont pas vérifiés. En savoir plus

À propos de cet e-book

One of the fundamental ideas of mathematical analysis is the notion of a function; we use it to describe and study relationships among variable quantities in a system and transformations of a system. We have already discussed real functions of one real variable and a few examples of functions of several variables but there are many more examples of functions that the real world, physics, natural and social sciences, and mathematics have to offer: (a) not only do we associate numbers and points to points, but we as- ciate numbers or vectors to vectors, (b) in the calculus of variations and in mechanics one associates an - ergy or action to each curve y(t) connecting two points (a, y(a)) and (b,y(b)): b Lea ~(y) - / 9 F(t, y(t), y' (t))dt t. J a in terms of the so-called Lagrangian F(t, y, p), (c) in the theory of integral equations one maps a function into a new function b /1, d-r / o. J a by means of a kernel K(s, T), (d) in the theory of differential equations one considers transformations of a function x(t) into the new function t t f f( a where f(s, y) is given. 1 in M. Giaquinta, G. Modica, Mathematical Analysis. Functions of One Va- able, Birkh~user, Boston, 2003, which we shall refer to as [GM1] and in M. G- quinta, G. Modica, Mathematical Analysis. Approximation and Discrete Processes, Birkhs Boston, 2004, which we shall refer to as [GM2].

Donner une note à cet e-book

Dites-nous ce que vous en pensez.

Informations sur la lecture

Smartphones et tablettes
Installez l'application Google Play Livres pour Android et iPad ou iPhone. Elle se synchronise automatiquement avec votre compte et vous permet de lire des livres en ligne ou hors connexion, où que vous soyez.
Ordinateurs portables et de bureau
Vous pouvez écouter les livres audio achetés sur Google Play à l'aide du navigateur Web de votre ordinateur.
Liseuses et autres appareils
Pour lire sur des appareils e-Ink, comme les liseuses Kobo, vous devez télécharger un fichier et le transférer sur l'appareil en question. Suivez les instructions détaillées du Centre d'aide pour transférer les fichiers sur les liseuses compatibles.