Mathematical Analysis: Linear and Metric Structures and Continuity

· Springer Science & Business Media
E-bog
466
Sider
Bedømmelser og anmeldelser verificeres ikke  Få flere oplysninger

Om denne e-bog

One of the fundamental ideas of mathematical analysis is the notion of a function; we use it to describe and study relationships among variable quantities in a system and transformations of a system. We have already discussed real functions of one real variable and a few examples of functions of several variables but there are many more examples of functions that the real world, physics, natural and social sciences, and mathematics have to offer: (a) not only do we associate numbers and points to points, but we as- ciate numbers or vectors to vectors, (b) in the calculus of variations and in mechanics one associates an - ergy or action to each curve y(t) connecting two points (a, y(a)) and (b,y(b)): b Lea ~(y) - / 9 F(t, y(t), y' (t))dt t. J a in terms of the so-called Lagrangian F(t, y, p), (c) in the theory of integral equations one maps a function into a new function b /1, d-r / o. J a by means of a kernel K(s, T), (d) in the theory of differential equations one considers transformations of a function x(t) into the new function t t f f( a where f(s, y) is given. 1 in M. Giaquinta, G. Modica, Mathematical Analysis. Functions of One Va- able, Birkh~user, Boston, 2003, which we shall refer to as [GM1] and in M. G- quinta, G. Modica, Mathematical Analysis. Approximation and Discrete Processes, Birkhs Boston, 2004, which we shall refer to as [GM2].

Bedøm denne e-bog

Fortæl os, hvad du mener.

Oplysninger om læsning

Smartphones og tablets
Installer appen Google Play Bøger til Android og iPad/iPhone. Den synkroniserer automatisk med din konto og giver dig mulighed for at læse online eller offline, uanset hvor du er.
Bærbare og stationære computere
Du kan høre lydbøger, du har købt i Google Play via browseren på din computer.
e-læsere og andre enheder
Hvis du vil læse på e-ink-enheder som f.eks. Kobo-e-læsere, skal du downloade en fil og overføre den til din enhed. Følg den detaljerede vejledning i Hjælp for at overføre filerne til understøttede e-læsere.