Statistical Independence in Probability, Analysis and Number Theory

· Courier Dover Publications
4.0
2 reviews
Ebook
112
Pages
Ratings and reviews aren’t verified  Learn More

About this ebook

This concise monograph in probability by Mark Kac, a well-known mathematician, presumes a familiarity with Lebesgue's theory of measure and integration, the elementary theory of Fourier integrals, and the rudiments of number theory. Readers may then follow Dr. Kac's attempt "to rescue statistical independence from the fate of abstract oblivion by showing how in its simplest form it arises in various contexts cutting across different mathematical disciplines."
The treatment begins with an examination of a formula of Vieta that extends to the notion of statistical independence. Subsequent chapters explore laws of large numbers and Émile Borel's concept of normal numbers; the normal law, as expressed by Abraham de Moivre and Andrey Markov's method; and number theoretic functions as well as the normal law in number theory. The final chapter ranges in scope from kinetic theory to continued fractions. All five chapters are enhanced by problems.

Ratings and reviews

4.0
2 reviews
Anil Das
January 16, 2021
AAA
Did you find this helpful?

About the author

Mark Kac (1914–1984) was born in Poland and came to the United States in the 1930s. He taught at Cornell and later served on the faculties of Rockefeller University in New York and the University of Southern California. His main focus was probability theory, and Dover also publishes his Mathematics and Logic, co-written with S. M. Ulam.

Rate this ebook

Tell us what you think.

Reading information

Smartphones and tablets
Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.
Laptops and computers
You can listen to audiobooks purchased on Google Play using your computer's web browser.
eReaders and other devices
To read on e-ink devices like Kobo eReaders, you'll need to download a file and transfer it to your device. Follow the detailed Help Center instructions to transfer the files to supported eReaders.