Homological Algebra: The Interplay Of Homology With Distributive Lattices And Orthodox Semigroups

· World Scientific
Ebook
384
Pages
Eligible
Ratings and reviews aren’t verified  Learn More

About this ebook

In this book we want to explore aspects of coherence in homological algebra, that already appear in the classical situation of abelian groups or abelian categories. Lattices of subobjects are shown to play an important role in the study of homological systems, from simple chain complexes to all the structures that give rise to spectral sequences. A parallel role is played by semigroups of endorelations.These links rest on the fact that many such systems, but not all of them, live in distributive sublattices of the modular lattices of subobjects of the system.The property of distributivity allows one to work with induced morphisms in an automatically consistent way, as we prove in a ‘Coherence Theorem for homological algebra’. (On the contrary, a ‘non-distributive’ homological structure like the bifiltered chain complex can easily lead to inconsistency, if one explores the interaction of its two spectral sequences farther than it is normally done.)The same property of distributivity also permits representations of homological structures by means of sets and lattices of subsets, yielding a precise foundation for the heuristic tool of Zeeman diagrams as universal models of spectral sequences.We thus establish an effective method of working with spectral sequences, called ‘crossword chasing’, that can often replace the usual complicated algebraic tools and be of much help to readers that want to apply spectral sequences in any field.

Rate this ebook

Tell us what you think.

Reading information

Smartphones and tablets
Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.
Laptops and computers
You can listen to audiobooks purchased on Google Play using your computer's web browser.
eReaders and other devices
To read on e-ink devices like Kobo eReaders, you'll need to download a file and transfer it to your device. Follow the detailed Help Center instructions to transfer the files to supported eReaders.