Machine Learning

· Robotics Science 第 79 冊 · One Billion Knowledgeable
電子書
317
頁數
符合資格
評分和評論未經驗證 瞭解詳情

關於這本電子書

Explore the world of machine learning as it intersects with robotics science in this comprehensive guide. This book introduces readers to the foundational concepts of machine learning, demonstrating its critical role in modern robotics. Ideal for professionals, students, and enthusiasts alike, it offers a wellrounded insight into the field’s advancements, practical applications, and future potentials, making it a valuable resource for anyone invested in robotics and machine learning.

Chapters Brief Overview:


1: Machine Learning An overview of machine learning principles in robotics.


2: Artificial Intelligence Examines AI’s integral role in enhancing robotic capabilities.


3: Supervised Learning Delves into models where outcomes guide robotic decisions.


4: Neural Network (Machine Learning) Introduces neural network architectures for robots.


5: Pattern Recognition Covers the role of patterns in robot perception and decisionmaking.


6: Unsupervised Learning Explores datadriven insights for autonomous robotic functions.


7: Training, Validation, and Test Data Sets Examines data preparation for robotics applications.


8: MetaLearning (Computer Science) Discusses robots learning to optimize their own learning.


9: Hierarchical Temporal Memory Explores advanced memory models for robotics.


10: Data Analysis for Fraud Detection Illustrates machine learning in robotic security.


11: Types of Artificial Neural Networks Overview of neural networks applied in robotics.


12: Deep Learning Examines complex, multilayered networks for advanced robotics.


13: Learning Rule Reviews the learning principles applied to robotic intelligence.


14: Feature Learning Describes extracting meaningful patterns in robotics contexts.


15: Deep Belief Network Discusses deep belief structures for robotic learning.


16: Domain Adaptation Covers robots adapting to new environments and tasks.


17: Incremental Learning Shows robots’ ability to build on previous learning.


18: Explainable Artificial Intelligence Focuses on transparency in robot decisions.


19: SelfSupervised Learning Examines selfreliant learning methods in robotics.


20: Symbolic Artificial Intelligence Explores logicbased AI for robotics.


21: Neats and Scruffies Analyzes the structured and flexible approaches in robotics.


This book is not just a technical guide but an insightful journey through robotics science. As machine learning continues to transform the industry, this work provides both practical tools and theoretical insights, making the investment in this knowledge a smart choice for future innovators.

為這本電子書評分

請分享你的寶貴意見。

閱讀資訊

智能手機和平板電腦
請安裝 Android 版iPad/iPhone 版「Google Play 圖書」應用程式。這個應用程式會自動與你的帳戶保持同步,讓你隨時隨地上網或離線閱讀。
手提電腦和電腦
你可以使用電腦的網絡瀏覽器聆聽在 Google Play 上購買的有聲書。
電子書閱讀器及其他裝置
如要在 Kobo 等電子墨水裝置上閱覽書籍,你需要下載檔案並傳輸到你的裝置。請按照說明中心的詳細指示,將檔案傳輸到支援的電子書閱讀器。