MM Optimization Algorithms

· Other Titles in Applied Mathematics 145권 · SIAM
5.0
리뷰 1개
eBook
232
페이지
적용 가능
검증되지 않은 평점과 리뷰입니다.  자세히 알아보기

eBook 정보

MM Optimization Algorithms offers an overview of the MM principle, a device for deriving optimization algorithms satisfying the ascent or descent property. These algorithms can separate the variables of a problem, avoid large matrix inversions, linearize a problem, restore symmetry, deal with equality and inequality constraints gracefully, and turn a nondifferentiable problem into a smooth problem.

The author presents the first extended treatment of MM algorithms, which are ideal for high-dimensional optimization problems in data mining, imaging, and genomics; derives numerous algorithms from a broad diversity of application areas, with a particular emphasis on statistics, biology, and data mining; and summarizes a large amount of literature that has not reached book form before.

평점 및 리뷰

5.0
리뷰 1개

저자 정보

Kenneth Lange is the Rosenfeld Professor of Computational Genetics, and a faculty member in the Departments of Biomathematics, Human Genetics and Statistics, at the University of California, Los Angeles. He has held appointments at the University of New Hampshire, Massachusetts Institute of Technology, Harvard University, the University of Michigan, the University of Helsinki and Stanford University. He is a Fellow of the American Statistical Association, the Institute of Mathematical Statistics, and the American Institute for Medical and Biomedical Engineering. He won the Snedecor Award from the Joint Statistical Societies in 1993 and gave a platform presentation at the 2015 International Congress of Mathematicians. His research interests include human genetics, population modeling, biomedical imaging, computational statistics, optimization theory, and applied stochastic processes. He has published four previous books: Mathematical and Statistical Methods for Genetic Analysis, Numerical Analysis for Statisticians, Applied Probability, and Optimization, all in second editions.

이 eBook 평가

의견을 알려주세요.

읽기 정보

스마트폰 및 태블릿
AndroidiPad/iPhoneGoogle Play 북 앱을 설치하세요. 계정과 자동으로 동기화되어 어디서나 온라인 또는 오프라인으로 책을 읽을 수 있습니다.
노트북 및 컴퓨터
컴퓨터의 웹브라우저를 사용하여 Google Play에서 구매한 오디오북을 들을 수 있습니다.
eReader 및 기타 기기
Kobo eReader 등의 eBook 리더기에서 읽으려면 파일을 다운로드하여 기기로 전송해야 합니다. 지원되는 eBook 리더기로 파일을 전송하려면 고객센터에서 자세한 안내를 따르세요.