Locally Perturbed Random Walks

· · ·
· Springer Nature
Электронная книга
248
Количество страниц
Оценки и отзывы не проверены. Подробнее…

Об электронной книге

This monograph provides a comprehensive overview of locally perturbed random walks, tools used for their analysis, and current research on their applications. The authors present the material in a self-contained manner, providing strong motivation in Chapter One with illustrative examples of locally perturbed random walks and an introduction of the mathematical tools that are used throughout the book. Chapter Two shows the construction of various stochastic processes that serve as scaling limits for locally perturbed random walks, particularly focusing on reflected and skewed processes. In Chapter Three, the authors prove various limit theorems for these perturbed random walks. The final chapter serves as an appendix that collects essential background material for readers who wish to understand the arguments more deeply. Locally Perturbed Random Walks will appeal to researchers interested in this area within modern probability theory. It is also accessible to students who have taken a second course in probability.

Об авторе

Alexander Iksanov is Head of Operations Research Department at Taras Shevchenko National University of Kyiv. Among his main mathematical interests are Discrete Probability Theory and Stochastic Processes.

Alexander Marynych, a Ukrainian mathematician, specializes in stochastic processes and random structures, with research spanning geometry, probability, and number theory​.

Andrey Pilipenko is Leading Researcher at the Institute of Mathematics, Ukrainian National Academy of Sciences, and Professor at Igor Sikorsky Kyiv Polytechnic Institute. Among his main mathematical interests are Stochastic Systems with Singularities.

Ihor Samoilenko is Professor of Operations Research Department at Taras Shevchenko National University of Kyiv. The area of his expertise includes Random Evolutions and Dynamic Systems in Random Environment.

Оцените электронную книгу

Поделитесь с нами своим мнением.

Где читать книги

Смартфоны и планшеты
Установите приложение Google Play Книги для Android или iPad/iPhone. Оно синхронизируется с вашим аккаунтом автоматически, и вы сможете читать любимые книги онлайн и офлайн где угодно.
Ноутбуки и настольные компьютеры
Слушайте аудиокниги из Google Play в веб-браузере на компьютере.
Устройства для чтения книг
Чтобы открыть книгу на таком устройстве для чтения, как Kobo, скачайте файл и добавьте его на устройство. Подробные инструкции можно найти в Справочном центре.