Local Pattern Detection: International Seminar Dagstuhl Castle, Germany, April 12-16, 2004, Revised Selected Papers

· ·
· Springer
Электрондук китеп
233
Барактар
Рейтинг жана сын-пикирлер текшерилген жок  Кеңири маалымат

Учкай маалымат

Introduction The dramatic increase in available computer storage capacity over the last 10 years has led to the creation of very large databases of scienti?c and commercial information. The need to analyze these masses of data has led to the evolution of the new ?eld knowledge discovery in databases (KDD) at the intersection of machine learning, statistics and database technology. Being interdisciplinary by nature, the ?eld o?ers the opportunity to combine the expertise of di?erent ?elds intoacommonobjective.Moreover,withineach?elddiversemethodshave been developed and justi?ed with respect to di?erent quality criteria. We have toinvestigatehowthesemethods cancontributeto solvingthe problemofKDD. Traditionally, KDD was seeking to ?nd global models for the data that - plain most of the instances of the database and describe the general structure of the data. Examples are statistical time series models, cluster models, logic programs with high coverageor classi?cation models like decision trees or linear decision functions. In practice, though, the use of these models often is very l- ited, because global models tend to ?nd only the obvious patterns in the data, 1 which domain experts already are aware of . What is really of interest to the users are the local patterns that deviate from the already-known background knowledge. David Hand, who organized a workshop in 2002, proposed the new ?eld of local patterns.

Бул электрондук китепти баалаңыз

Оюңуз менен бөлүшүп коюңуз.

Окуу маалыматы

Смартфондор жана планшеттер
Android жана iPad/iPhone үчүн Google Play Китептер колдонмосун орнотуңуз. Ал автоматтык түрдө аккаунтуңуз менен шайкештелип, кайда болбоңуз, онлайнда же оффлайнда окуу мүмкүнчүлүгүн берет.
Ноутбуктар жана компьютерлер
Google Play'ден сатылып алынган аудиокитептерди компьютериңиздин веб браузеринен уга аласыз.
eReaders жана башка түзмөктөр
Kobo eReaders сыяктуу электрондук сыя түзмөктөрүнөн окуу үчүн, файлды жүктөп алып, аны түзмөгүңүзгө өткөрүшүңүз керек. Файлдарды колдоого алынган eReaders'ке өткөрүү үчүн Жардам борборунун нускамаларын аткарыңыз.

Төмөнкү автордун башка китептери: Katharina Morik

Окшош электрондук китептер