Linguistic Geometry and its Applications

· ·
· Infinite Study
Sách điện tử
232
Trang
Đủ điều kiện
Điểm xếp hạng và bài đánh giá chưa được xác minh  Tìm hiểu thêm

Giới thiệu về sách điện tử này

The notion of linguistic geometry is defined in this book. It is pertinent to keep in the record that linguistic geometry differs from classical geometry. Many basic or fundamental concepts and notions of classical geometry are not true or extendable in the case of linguistic geometry. Hence, for simple illustration, facts like two distinct points in classical geometry always define a line passing through them; this is generally not true in linguistic geometry. Suppose we have two linguistic points as tall and light we cannot connect them, or technically, there is no line between them. However, let's take, for instance, two linguistic points, tall and very short, associated with the linguistic variable height of a person. We have a directed line joining from the linguistic point very short to the linguistic point tall. In this case, it is important to note that the direction is essential when the linguistic variable is a person's height. The other way line, from tall to very short, has no meaning. So in linguistic geometry, in general, we may not have a linguistic line; granted, we have a line, but we may not have it in both directions; the line may be directed. The linguistic distance is very far. So, the linguistic line directed or otherwise exists if and only if they are comparable. Hence the very concept of extending the line infinitely does not exist. Likewise, we cannot say as in classical geometry; three noncollinear points determine the plane in linguistic geometry. Further, we do not have the notion of the linguistic area of well-defined figures like a triangle, quadrilateral or any polygon as in the case of classical geometry. The best part of linguistic geometry is that we can define the new notion of linguistic social information geometric networks analogous to social information networks. This will be a boon to non-mathematics researchers in socio-sciences in other fields where natural languages can replace mathematics.

Xếp hạng sách điện tử này

Cho chúng tôi biết suy nghĩ của bạn.

Đọc thông tin

Điện thoại thông minh và máy tính bảng
Cài đặt ứng dụng Google Play Sách cho AndroidiPad/iPhone. Ứng dụng sẽ tự động đồng bộ hóa với tài khoản của bạn và cho phép bạn đọc trực tuyến hoặc ngoại tuyến dù cho bạn ở đâu.
Máy tính xách tay và máy tính
Bạn có thể nghe các sách nói đã mua trên Google Play thông qua trình duyệt web trên máy tính.
Thiết bị đọc sách điện tử và các thiết bị khác
Để đọc trên thiết bị e-ink như máy đọc sách điện tử Kobo, bạn sẽ cần tải tệp xuống và chuyển tệp đó sang thiết bị của mình. Hãy làm theo hướng dẫn chi tiết trong Trung tâm trợ giúp để chuyển tệp sang máy đọc sách điện tử được hỗ trợ.