Linear Algebra: Edition 2

· Grundlehren der mathematischen Wissenschaften Cartea 97 · Springer
Carte electronică
338
Pagini
Evaluările și recenziile nu sunt verificate Află mai multe

Despre această carte electronică

Besides the very obvious change from German to English, the second edition of this book contains many additions as weil as a great many other changes. It might even be called a new book altogether were it not for the fact that the essential character of the book has remained the same; in other words, the entire presentation continues to be based on an axiomatic treatment of linear spaces. In this second edition, the thorough-going restriction to linear spaces of finite dimension has been removed. Another complete change is the restriction to linear spaces with real or complex coefficients, thereby removing a number of relatively involved discussions which did not really contribute substantially to the subject. On p.6 there is a list of those chapters in which the presentation can be transferred directly to spaces over an arbitrary coefficient field. Chapter I deals with the general properties of a linear space. Those concepts which are only valid for finitely many dimensions are discussed in a special paragraph. Chapter 11 now covers only linear transformations while the treat ment of matrices has been delegated to a new chapter, chapter 111. The discussion of dual spaces has been changed; dual spaces are now intro duced abstractly and the connection with the space of linear functions is not established untillater.

Evaluează cartea electronică

Spune-ne ce crezi.

Informații despre lectură

Smartphone-uri și tablete
Instalează aplicația Cărți Google Play pentru Android și iPad/iPhone. Se sincronizează automat cu contul tău și poți să citești online sau offline de oriunde te afli.
Laptopuri și computere
Poți să asculți cărțile audio achiziționate pe Google Play folosind browserul web al computerului.
Dispozitive eReader și alte dispozitive
Ca să citești pe dispozitive pentru citit cărți electronice, cum ar fi eReaderul Kobo, trebuie să descarci un fișier și să îl transferi pe dispozitiv. Urmează instrucțiunile detaliate din Centrul de ajutor pentru a transfera fișiere pe dispozitivele eReader compatibile.