Lectures on Real-valued Functions

· Springer Nature
Carte electronică
452
Pagini
Evaluările și recenziile nu sunt verificate Află mai multe

Despre această carte electronică

This book offers several topics of mathematical analysis which are closely connected with significant properties of real-valued functions of various types (such as semi-continuous functions, monotone functions, convex functions, measurable functions, additive and linear functionals, etc.). Alongside with fairly traditional themes of real analysis and classical measure theory, more profound questions are thoroughly discussed in the book – appropriate extensions and restrictions of functions, oscillation functions and their characterization, discontinuous functions on resolvable topological spaces, pointwise limits of finite sums of periodic functions, some general results on invariant and quasi-invariant measures, the structure of non-measurable sets and functions, the Baire property of functions on topological spaces and its connections with measurability properties of functions, logical and set-theoretical aspects of the behavior of real-valued functions.

Despre autor

Alexander Kharazishvili is a chief researcher at the A. Razmadze Mathematical Institute of Tbilisi State University and a member of the Georgian National Academy of Sciences. His research interests mainly concern real analysis and measure theory, mostly with various properties of real-valued functions such as topological, algebraic, measure-theoretical, etc. He has more than 300 scientific publications and is the author of the book "Strange Functions in Real Analysis", published by CRC Press. The third edition of this book was published in 2018.

Evaluează cartea electronică

Spune-ne ce crezi.

Informații despre lectură

Smartphone-uri și tablete
Instalează aplicația Cărți Google Play pentru Android și iPad/iPhone. Se sincronizează automat cu contul tău și poți să citești online sau offline de oriunde te afli.
Laptopuri și computere
Poți să asculți cărțile audio achiziționate pe Google Play folosind browserul web al computerului.
Dispozitive eReader și alte dispozitive
Ca să citești pe dispozitive pentru citit cărți electronice, cum ar fi eReaderul Kobo, trebuie să descarci un fișier și să îl transferi pe dispozitiv. Urmează instrucțiunile detaliate din Centrul de ajutor pentru a transfera fișiere pe dispozitivele eReader compatibile.