Lectures on Real-valued Functions

· Springer Nature
Ebook
452
pagine
Valutazioni e recensioni non sono verificate  Scopri di più

Informazioni su questo ebook

This book offers several topics of mathematical analysis which are closely connected with significant properties of real-valued functions of various types (such as semi-continuous functions, monotone functions, convex functions, measurable functions, additive and linear functionals, etc.). Alongside with fairly traditional themes of real analysis and classical measure theory, more profound questions are thoroughly discussed in the book – appropriate extensions and restrictions of functions, oscillation functions and their characterization, discontinuous functions on resolvable topological spaces, pointwise limits of finite sums of periodic functions, some general results on invariant and quasi-invariant measures, the structure of non-measurable sets and functions, the Baire property of functions on topological spaces and its connections with measurability properties of functions, logical and set-theoretical aspects of the behavior of real-valued functions.

Informazioni sull'autore

Alexander Kharazishvili is a chief researcher at the A. Razmadze Mathematical Institute of Tbilisi State University and a member of the Georgian National Academy of Sciences. His research interests mainly concern real analysis and measure theory, mostly with various properties of real-valued functions such as topological, algebraic, measure-theoretical, etc. He has more than 300 scientific publications and is the author of the book "Strange Functions in Real Analysis", published by CRC Press. The third edition of this book was published in 2018.

Valuta questo ebook

Dicci cosa ne pensi.

Informazioni sulla lettura

Smartphone e tablet
Installa l'app Google Play Libri per Android e iPad/iPhone. L'app verrà sincronizzata automaticamente con il tuo account e potrai leggere libri online oppure offline ovunque tu sia.
Laptop e computer
Puoi ascoltare gli audiolibri acquistati su Google Play usando il browser web del tuo computer.
eReader e altri dispositivi
Per leggere su dispositivi e-ink come Kobo e eReader, dovrai scaricare un file e trasferirlo sul dispositivo. Segui le istruzioni dettagliate del Centro assistenza per trasferire i file sugli eReader supportati.