Lectures on Morse Homology

· Texts in the Mathematical Sciences ספר 29 · Springer Science & Business Media
ספר דיגיטלי
326
דפים
הביקורות והדירוגים לא מאומתים מידע נוסף

מידע על הספר הדיגיטלי הזה

This book is based on the lecture notes from a course we taught at Penn State University during the fall of 2002. The main goal of the course was to give a complete and detailed proof of the Morse Homology Theorem (Theo rem 7.4) at a level appropriate for second year graduate students. The course was designed for students who had a basic understanding of singular homol ogy, CW-complexes, applications of the existence and uniqueness theorem for O.D.E.s to vector fields on smooth Riemannian manifolds, and Sard's Theo rem. We would like to thank the following students for their participation in the course and their help proofreading early versions of this manuscript: James Barton, Shantanu Dave, Svetlana Krat, Viet-Trung Luu, and Chris Saunders. We would especially like to thank Chris Saunders for his dedication and en thusiasm concerning this project and the many helpful suggestions he made throughout the development of this text. We would also like to thank Bob Wells for sharing with us his extensive knowledge of CW-complexes, Morse theory, and singular homology. Chapters 3 and 6, in particular, benefited significantly from the many insightful conver sations we had with Bob Wells concerning a Morse function and its associated CW-complex.

רוצה לדרג את הספר הדיגיטלי הזה?

נשמח לשמוע מה דעתך.

איך קוראים את הספר

סמארטפונים וטאבלטים
כל מה שצריך לעשות הוא להתקין את האפליקציה של Google Play Books ל-Android או ל-iPad/iPhone‏. היא מסתנכרנת באופן אוטומטי עם החשבון שלך ומאפשרת לך לקרוא מכל מקום, גם ללא חיבור לאינטרנט.
מחשבים ניידים ושולחניים
ניתן להאזין לספרי אודיו שנרכשו ב-Google Play באמצעות דפדפן האינטרנט של המחשב.
eReaders ומכשירים אחרים
כדי לקרוא במכשירים עם תצוגת דיו אלקטרוני (e-ink) כמו הקוראים האלקטרוניים של Kobo, צריך להוריד קובץ ולהעביר אותו למכשיר. יש לפעול לפי ההוראות המפורטות במרכז העזרה כדי להעביר את הקבצים לקוראים אלקטרוניים נתמכים.