Lectures on Homotopy Theory

· North-Holland Mathematics Studies 171-р ном · Elsevier
Электрон ном
292
Хуудас
Боломжит
Үнэлгээ болон шүүмжийг баталгаажуулаагүй  Нэмэлт мэдээлэл авах

Энэ электрон номын тухай

The central idea of the lecture course which gave birth to this book was to define the homotopy groups of a space and then give all the machinery needed to prove in detail that the nth homotopy group of the sphere Sn, for n greater than or equal to 1 is isomorphic to the group of the integers, that the lower homotopy groups of Sn are trivial and that the third homotopy group of S2 is also isomorphic to the group of the integers. All this was achieved by discussing H-spaces and CoH-spaces, fibrations and cofibrations (rather thoroughly), simplicial structures and the homotopy groups of maps.Later, the book was expanded to introduce CW-complexes and their homotopy groups, to construct a special class of CW-complexes (the Eilenberg-Mac Lane spaces) and to include a chapter devoted to the study of the action of the fundamental group on the higher homotopy groups and the study of fibrations in the context of a category in which the fibres are forced to live; the final material of that chapter is a comparison of various kinds of universal fibrations. Completing the book are two appendices on compactly generated spaces and the theory of colimits. The book does not require any prior knowledge of Algebraic Topology and only rudimentary concepts of Category Theory are necessary; however, the student is supposed to be well at ease with the main general theorems of Topology and have a reasonable mathematical maturity.

Энэ электрон номыг үнэлэх

Санал бодлоо хэлнэ үү.

Унших мэдээлэл

Ухаалаг утас болон таблет
Андройд болон iPad/iPhoneGoogle Ном Унших аппыг суулгана уу. Үүнийг таны бүртгэлд автоматаар синк хийх бөгөөд та хүссэн газраасаа онлайн эсвэл офлайнаар унших боломжтой.
Зөөврийн болон ердийн компьютер
Та компьютерийн веб хөтчөөр Google Play-с авсан аудио номыг сонсох боломжтой.
eReaders болон бусад төхөөрөмжүүд
Kobo Цахим ном уншигч гэх мэт e-ink төхөөрөмжүүд дээр уншихын тулд та файлыг татаад төхөөрөмж рүүгээ дамжуулах шаардлагатай болно. Файлуудаа дэмжигддэг Цахим ном уншигч руу шилжүүлэхийн тулд Тусламжийн төвийн дэлгэрэнгүй зааварчилгааг дагана уу.