Lectures on Homotopy Theory

· North-Holland Mathematics Studies Livre 171 · Elsevier
Ebook
292
Pages
Admissible
Les notes et les avis ne sont pas vérifiés  En savoir plus

À propos de cet ebook

The central idea of the lecture course which gave birth to this book was to define the homotopy groups of a space and then give all the machinery needed to prove in detail that the nth homotopy group of the sphere Sn, for n greater than or equal to 1 is isomorphic to the group of the integers, that the lower homotopy groups of Sn are trivial and that the third homotopy group of S2 is also isomorphic to the group of the integers. All this was achieved by discussing H-spaces and CoH-spaces, fibrations and cofibrations (rather thoroughly), simplicial structures and the homotopy groups of maps.Later, the book was expanded to introduce CW-complexes and their homotopy groups, to construct a special class of CW-complexes (the Eilenberg-Mac Lane spaces) and to include a chapter devoted to the study of the action of the fundamental group on the higher homotopy groups and the study of fibrations in the context of a category in which the fibres are forced to live; the final material of that chapter is a comparison of various kinds of universal fibrations. Completing the book are two appendices on compactly generated spaces and the theory of colimits. The book does not require any prior knowledge of Algebraic Topology and only rudimentary concepts of Category Theory are necessary; however, the student is supposed to be well at ease with the main general theorems of Topology and have a reasonable mathematical maturity.

Attribuez une note à ce ebook

Faites-nous part de votre avis.

Informations sur la lecture

Téléphones intelligents et tablettes
Installez l'appli Google Play Livres pour Android et iPad ou iPhone. Elle se synchronise automatiquement avec votre compte et vous permet de lire des livres en ligne ou hors connexion, où que vous soyez.
Ordinateurs portables et de bureau
Vous pouvez écouter les livres audio achetés sur Google Play en utilisant le navigateur Web de votre ordinateur.
Liseuses et autres appareils
Pour pouvoir lire des ouvrages sur des appareils utilisant la technologie e-Ink, comme les liseuses électroniques Kobo, vous devez télécharger un fichier et le transférer sur l'appareil en question. Suivez les instructions détaillées du centre d'aide pour transférer les fichiers sur les liseuses électroniques compatibles.