Learning to Quantify

· · ·
· The Information Retrieval Series Buku 47 · Springer Nature
5,0
1 ulasan
eBook
137
Halaman
Rating dan ulasan tidak diverifikasi  Pelajari Lebih Lanjut

Tentang eBook ini

This open access book provides an introduction and an overview of learning to quantify (a.k.a. “quantification”), i.e. the task of training estimators of class proportions in unlabeled data by means of supervised learning. In data science, learning to quantify is a task of its own related to classification yet different from it, since estimating class proportions by simply classifying all data and counting the labels assigned by the classifier is known to often return inaccurate (“biased”) class proportion estimates.

The book introduces learning to quantify by looking at the supervised learning methods that can be used to perform it, at the evaluation measures and evaluation protocols that should be used for evaluating the quality of the returned predictions, at the numerous fields of human activity in which the use of quantification techniques may provide improved results with respect to the naive use of classification techniques, and at advanced topics in quantification research.

The book is suitable to researchers, data scientists, or PhD students, who want to come up to speed with the state of the art in learning to quantify, but also to researchers wishing to apply data science technologies to fields of human activity (e.g., the social sciences, political science, epidemiology, market research) which focus on aggregate (“macro”) data rather than on individual (“micro”) data.



Rating dan ulasan

5,0
1 ulasan

Tentang pengarang

Andrea Esuli is a tenured Senior Researcher at the Italian National Council of Research. His research interests include learning to quantify, deep learning for text analysis, cross-modal classification, technology-assisted review, and representation learning.

Alessandro Fabris is a PhD student at the University of Padova. His research interests include learning to quantify, and the fairness and bias of retrieval and classification systems.

Alejandro Moreo is a tenured Researcher at the Italian National Council of Research. His research interests include learning to quantify, deep learning for text analysis, cross-lingual text classification, authorship analysis, and representation learning.

Fabrizio Sebastiani is a tenured Director of Research at the Italian National Council of Research. His research interests include learning to quantify, cross-lingual text classification, technology-assisted review, authorship analysis, and representation learning.


Beri rating eBook ini

Sampaikan pendapat Anda.

Informasi bacaan

Smartphone dan tablet
Instal aplikasi Google Play Buku untuk Android dan iPad/iPhone. Aplikasi akan disinkronkan secara otomatis dengan akun Anda dan dapat diakses secara online maupun offline di mana saja.
Laptop dan komputer
Anda dapat mendengarkan buku audio yang dibeli di Google Play menggunakan browser web komputer.
eReader dan perangkat lainnya
Untuk membaca di perangkat e-ink seperti Kobo eReaders, Anda perlu mendownload file dan mentransfernya ke perangkat Anda. Ikuti petunjuk Pusat bantuan yang mendetail untuk mentransfer file ke eReaders yang didukung.