Learning to Quantify

· · ·
· The Information Retrieval Series Kitab 47 · Springer Nature
5,0
1 rəy
E-kitab
137
Səhifələr
Reytinqlər və rəylər doğrulanmır  Ətraflı Məlumat

Bu e-kitab haqqında

This open access book provides an introduction and an overview of learning to quantify (a.k.a. “quantification”), i.e. the task of training estimators of class proportions in unlabeled data by means of supervised learning. In data science, learning to quantify is a task of its own related to classification yet different from it, since estimating class proportions by simply classifying all data and counting the labels assigned by the classifier is known to often return inaccurate (“biased”) class proportion estimates.

The book introduces learning to quantify by looking at the supervised learning methods that can be used to perform it, at the evaluation measures and evaluation protocols that should be used for evaluating the quality of the returned predictions, at the numerous fields of human activity in which the use of quantification techniques may provide improved results with respect to the naive use of classification techniques, and at advanced topics in quantification research.

The book is suitable to researchers, data scientists, or PhD students, who want to come up to speed with the state of the art in learning to quantify, but also to researchers wishing to apply data science technologies to fields of human activity (e.g., the social sciences, political science, epidemiology, market research) which focus on aggregate (“macro”) data rather than on individual (“micro”) data.



Reytinqlər və rəylər

5,0
1 rəy

Müəllif haqqında

Andrea Esuli is a tenured Senior Researcher at the Italian National Council of Research. His research interests include learning to quantify, deep learning for text analysis, cross-modal classification, technology-assisted review, and representation learning.

Alessandro Fabris is a PhD student at the University of Padova. His research interests include learning to quantify, and the fairness and bias of retrieval and classification systems.

Alejandro Moreo is a tenured Researcher at the Italian National Council of Research. His research interests include learning to quantify, deep learning for text analysis, cross-lingual text classification, authorship analysis, and representation learning.

Fabrizio Sebastiani is a tenured Director of Research at the Italian National Council of Research. His research interests include learning to quantify, cross-lingual text classification, technology-assisted review, authorship analysis, and representation learning.


Bu e-kitabı qiymətləndirin

Fikirlərinizi bizə deyin

Məlumat oxunur

Smartfonlar və planşetlər
AndroidiPad/iPhone üçün Google Play Kitablar tətbiqini quraşdırın. Bu hesabınızla avtomatik sinxronlaşır və harada olmağınızdan asılı olmayaraq onlayn və oflayn rejimdə oxumanıza imkan yaradır.
Noutbuklar və kompüterlər
Kompüterinizin veb brauzerini istifadə etməklə Google Play'də alınmış audio kitabları dinləyə bilərsiniz.
eReader'lər və digər cihazlar
Kobo eReaders kimi e-mürəkkəb cihazlarında oxumaq üçün faylı endirməli və onu cihazınıza köçürməlisiniz. Faylları dəstəklənən eReader'lərə köçürmək üçün ətraflı Yardım Mərkəzi təlimatlarını izləyin.

Seriyaya davam edin

Andrea Esuli tərəfindən daha artığı

Oxşar e-kitablar