Lattice Structures on Banach Spaces

· American Mathematical Society: Memoirs of the American Mathematical Society Cartea 493 · American Mathematical Soc.
Carte electronică
92
Pagini
Evaluările și recenziile nu sunt verificate Află mai multe

Despre această carte electronică

The general problem addressed in this work is to characterize the possible Banach lattice structures that a separable Banach space may have. The basic questions of uniqueness of lattice structure for function spaces have been studied before, but here the approach uses random measure representations for operators in a new way to obtain more powerful conclusions. A typical result is the following: If $X$ is a rearrangement-invariant space on $[0,1]$ not equal to $L_2$, and if $Y$ is an order-continuous Banach lattice which has a complemented subspace isomorphic as a Banach space to $X$, then $Y$ has a complemented sublattice which is isomorphic to $X$ (with one of two possible lattice structures). New examples are also given of spaces with a unique lattice structure.

Evaluează cartea electronică

Spune-ne ce crezi.

Informații despre lectură

Smartphone-uri și tablete
Instalează aplicația Cărți Google Play pentru Android și iPad/iPhone. Se sincronizează automat cu contul tău și poți să citești online sau offline de oriunde te afli.
Laptopuri și computere
Poți să asculți cărțile audio achiziționate pe Google Play folosind browserul web al computerului.
Dispozitive eReader și alte dispozitive
Ca să citești pe dispozitive pentru citit cărți electronice, cum ar fi eReaderul Kobo, trebuie să descarci un fișier și să îl transferi pe dispozitiv. Urmează instrucțiunile detaliate din Centrul de ajutor pentru a transfera fișiere pe dispozitivele eReader compatibile.