Lattice Structures on Banach Spaces

· American Mathematical Society: Memoirs of the American Mathematical Society Book 493 · American Mathematical Soc.
Ebook
92
Pages
Ratings and reviews aren’t verified  Learn More

About this ebook

The general problem addressed in this work is to characterize the possible Banach lattice structures that a separable Banach space may have. The basic questions of uniqueness of lattice structure for function spaces have been studied before, but here the approach uses random measure representations for operators in a new way to obtain more powerful conclusions. A typical result is the following: If $X$ is a rearrangement-invariant space on $[0,1]$ not equal to $L_2$, and if $Y$ is an order-continuous Banach lattice which has a complemented subspace isomorphic as a Banach space to $X$, then $Y$ has a complemented sublattice which is isomorphic to $X$ (with one of two possible lattice structures). New examples are also given of spaces with a unique lattice structure.

Rate this ebook

Tell us what you think.

Reading information

Smartphones and tablets
Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.
Laptops and computers
You can listen to audiobooks purchased on Google Play using your computer's web browser.
eReaders and other devices
To read on e-ink devices like Kobo eReaders, you'll need to download a file and transfer it to your device. Follow the detailed Help Center instructions to transfer the files to supported eReaders.