L-Functions: An Elementary Introduction

· UNITEXT Cartea 171 · Springer Nature
Carte electronică
261
Pagini
Evaluările și recenziile nu sunt verificate Află mai multe

Despre această carte electronică

This book provides an accessible introduction to the theory of L-functions, emphasising their central role in number theory and their direct applications to key results. Designed to be elementary, it offers readers a clear pathway into the subject, starting from minimal background. It describes several important classes of L-functions — Riemann and Dedekind zeta functions, Dirichlet L-functions, and Hecke L-functions (for characters with finite image) — by showing how they are all special cases of the construction, due to Artin, of the L-function of a Galois representation. The analytic properties of abelian L-functions are presented in detail, including the full content of Tate's thesis, which establishes analytic continuation and functional equations via harmonic analysis. General Hecke L-functions are also discussed, using the modern perspective of idèles and adèles to connect their analytic theory with the representation-theoretic approach of Artin's L-functions. A distinguishing feature of this book is its accessibility: while largely avoiding arithmetic geometry, it provides introductions to both algebraic number theory and key aspects of representation theory. This approach ensures that the material is accessible to both beginning graduate students and advanced undergraduates. Applications play a central role throughout, highlighting how L-functions underpin significant results in number theory. The book provides complete proofs of the prime number theorem, Dirichlet's theorem on primes in arithmetic progressions, Chebotarev's density theorem, and the analytic class number formula, demonstrating the power of the theory in solving classical problems. It serves as an ideal introduction for advanced undergraduates and beginning graduate students and can also be a useful reference for preparing a course on the subject.

Despre autor

Davide Lombardo is a number theorist based at the University of Pisa, Italy. He studied at the Scuola Normale Superiore (Italy) and the Université Paris-Saclay (France), and obtained his PhD from the latter in 2016. After a short post-doctoral position in Hannover (Germany), he joined the Department of Mathematics in Pisa in 2017, first as a researcher and then – since 2022 – as an associate professor. His work focuses mainly on the geometric and arithmetic interplay between Galois representations and abelian varieties. L-functions are a fundamental tool in this area, providing a bridge between arithmetic and analytic objects.

Evaluează cartea electronică

Spune-ne ce crezi.

Informații despre lectură

Smartphone-uri și tablete
Instalează aplicația Cărți Google Play pentru Android și iPad/iPhone. Se sincronizează automat cu contul tău și poți să citești online sau offline de oriunde te afli.
Laptopuri și computere
Poți să asculți cărțile audio achiziționate pe Google Play folosind browserul web al computerului.
Dispozitive eReader și alte dispozitive
Ca să citești pe dispozitive pentru citit cărți electronice, cum ar fi eReaderul Kobo, trebuie să descarci un fișier și să îl transferi pe dispozitiv. Urmează instrucțiunile detaliate din Centrul de ajutor pentru a transfera fișiere pe dispozitivele eReader compatibile.