L-Functions: An Elementary Introduction

· UNITEXT الكتاب 171 · Springer Nature
كتاب إلكتروني
261
صفحة
لم يتم التحقّق من التقييمات والمراجعات.  مزيد من المعلومات

معلومات عن هذا الكتاب الإلكتروني

This book provides an accessible introduction to the theory of L-functions, emphasising their central role in number theory and their direct applications to key results. Designed to be elementary, it offers readers a clear pathway into the subject, starting from minimal background. It describes several important classes of L-functions — Riemann and Dedekind zeta functions, Dirichlet L-functions, and Hecke L-functions (for characters with finite image) — by showing how they are all special cases of the construction, due to Artin, of the L-function of a Galois representation. The analytic properties of abelian L-functions are presented in detail, including the full content of Tate's thesis, which establishes analytic continuation and functional equations via harmonic analysis. General Hecke L-functions are also discussed, using the modern perspective of idèles and adèles to connect their analytic theory with the representation-theoretic approach of Artin's L-functions. A distinguishing feature of this book is its accessibility: while largely avoiding arithmetic geometry, it provides introductions to both algebraic number theory and key aspects of representation theory. This approach ensures that the material is accessible to both beginning graduate students and advanced undergraduates. Applications play a central role throughout, highlighting how L-functions underpin significant results in number theory. The book provides complete proofs of the prime number theorem, Dirichlet's theorem on primes in arithmetic progressions, Chebotarev's density theorem, and the analytic class number formula, demonstrating the power of the theory in solving classical problems. It serves as an ideal introduction for advanced undergraduates and beginning graduate students and can also be a useful reference for preparing a course on the subject.

نبذة عن المؤلف

Davide Lombardo is a number theorist based at the University of Pisa, Italy. He studied at the Scuola Normale Superiore (Italy) and the Université Paris-Saclay (France), and obtained his PhD from the latter in 2016. After a short post-doctoral position in Hannover (Germany), he joined the Department of Mathematics in Pisa in 2017, first as a researcher and then – since 2022 – as an associate professor. His work focuses mainly on the geometric and arithmetic interplay between Galois representations and abelian varieties. L-functions are a fundamental tool in this area, providing a bridge between arithmetic and analytic objects.

تقييم هذا الكتاب الإلكتروني

أخبرنا ما هو رأيك.

معلومات القراءة

الهواتف الذكية والأجهزة اللوحية
ينبغي تثبيت تطبيق كتب Google Play لنظام التشغيل Android وiPad/iPhone. يعمل هذا التطبيق على إجراء مزامنة تلقائية مع حسابك ويتيح لك القراءة أثناء الاتصال بالإنترنت أو بلا اتصال بالإنترنت أينما كنت.
أجهزة الكمبيوتر المحمول وأجهزة الكمبيوتر
يمكنك الاستماع إلى الكتب المسموعة التي تم شراؤها على Google Play باستخدام متصفح الويب على جهاز الكمبيوتر.
أجهزة القراءة الإلكترونية والأجهزة الأخرى
للقراءة على أجهزة الحبر الإلكتروني، مثل أجهزة القارئ الإلكتروني Kobo، عليك تنزيل ملف ونقله إلى جهازك. يُرجى اتّباع التعليمات المفصّلة في مركز المساعدة لتتمكّن من نقل الملفات إلى أجهزة القارئ الإلكتروني المتوافقة.