Klassische elementare Analysis

· Springer-Verlag
Электрондук китеп
212
Барактар
Рейтинг жана сын-пикирлер текшерилген жок  Кеңири маалымат

Учкай маалымат

Fur Hansi Dieses Buch will die vielfiiltigen Anwendungsmoglichkeiten der zentralen Satze der Infinitesimalrechnung einer Variablen exemplarisch aufzeigen: Der Leser solI dadurch zu einer Beschaftigung mit Mathematik stimuliert werden, gleich zeitig werden damit aber die Begriffsbildungen der reellen Analysis auf beson dere Weise motiviert. Das vorliegende Buch wendet sich an Studenten in mittleren und hohe ren Semestern, an Mathematiklehrer und an interessierte Laien. Es eignet sich als Erganzung und als Begleitliteratur zu einfUhrenden Vorlesungen uber reelle Analysis und als Vorlage fUr Proseminare. Daruber hinaus kann der vorliegende Stoff ganz oder teilweise zu mathematikdidaktischen Vorlesungen verarbeitet werden. Aber auch der Kenner wird neue Varianten finden (z. B. 111.4.5 (5) oder V.5.5). Ein Zit at 111.5.2 bedeutet Abschnitt 2 im Paragraphen 5 des Kapitels III. Innerhalb eines Kapitels wird die (romische) Kapitelnummer, innerhalb eines Paragraphen die Paragraphennummer weggelassen, entsprechend wird inner halb eines Abschnitts vorgegangen. Eine in Klammern angefUgte Zahl bezeich net die Nummer einer Gleichung. Abschnitte und Paragraphen, die mit einem Stern * gekennzeichnet sind, konnen (und soIlen) bei der ersten Lekture fort gelassen werden. Dieser Text ist aus einer Vorlesung zur Fachdidaktik, die ich mehrfach an der Universitat Munster gehalten habe, entstanden. Dabei wurde ich bei der Durchsicht der Manuskripte von meinen Mitarbeitern Dr. E. NEHER, Dr. J. HEINZE, Dr. A. KRIEG und N. KOTISSEK tatkraftig unterstutzt, ihnen allen gilt mein Dank. Das endgiiItige Manuskript war im Fruhjahr 1985 fertiggestellt.

Бул электрондук китепти баалаңыз

Оюңуз менен бөлүшүп коюңуз.

Окуу маалыматы

Смартфондор жана планшеттер
Android жана iPad/iPhone үчүн Google Play Китептер колдонмосун орнотуңуз. Ал автоматтык түрдө аккаунтуңуз менен шайкештелип, кайда болбоңуз, онлайнда же оффлайнда окуу мүмкүнчүлүгүн берет.
Ноутбуктар жана компьютерлер
Google Play'ден сатылып алынган аудиокитептерди компьютериңиздин веб браузеринен уга аласыз.
eReaders жана башка түзмөктөр
Kobo eReaders сыяктуу электрондук сыя түзмөктөрүнөн окуу үчүн, файлды жүктөп алып, аны түзмөгүңүзгө өткөрүшүңүз керек. Файлдарды колдоого алынган eReaders'ке өткөрүү үчүн Жардам борборунун нускамаларын аткарыңыз.