Kernel Methods: Fundamentals and Applications

· Artificial Intelligence Книга 29 · One Billion Knowledgeable
Π•-ΠΊΠ½ΠΈΠ³Π°
103
Π‘Ρ‚Ρ€Π°Π½ΠΈΡ†ΠΈ
Π‘ΠΎΠΎΠ΄Π²Π΅Ρ‚Π½Π°
ΠžΡ†Π΅Π½ΠΈΡ‚Π΅ ΠΈ Ρ€Π΅Ρ†Π΅Π½Π·ΠΈΠΈΡ‚Π΅ Π½Π΅ сС ΠΏΠΎΡ‚Π²Ρ€Π΄Π΅Π½ΠΈ Β Π”ΠΎΠ·Π½Π°Ρ˜Ρ‚Π΅ повСќС

Π—Π° Π΅-ΠΊΠ½ΠΈΠ³Π°Π²Π°

What Is Kernel Methods

In the field of machine learning, kernel machines are a class of methods for pattern analysis. The support-vector machine (also known as SVM) is the most well-known member of this group. Pattern analysis frequently makes use of specific kinds of algorithms known as kernel approaches. Utilizing linear classifiers in order to solve nonlinear issues is what these strategies entail. Finding and studying different sorts of general relations present in datasets is the overarching goal of pattern analysis. Kernel methods, on the other hand, require only a user-specified kernel, which can be thought of as a similarity function over all pairs of data points computed using inner products. This is in contrast to many algorithms that solve these tasks, which require the data in their raw representation to be explicitly transformed into feature vector representations via a user-specified feature map. According to the Representer theorem, although the feature map in kernel machines has an unlimited number of dimensions, all that is required as user input is a matrix with a finite number of dimensions. Without parallel processing, computation on kernel machines is painfully slow for data sets with more than a few thousand individual cases.


How You Will Benefit


(I) Insights, and validations about the following topics:


Chapter 1: Kernel method


Chapter 2: Support vector machine


Chapter 3: Radial basis function


Chapter 4: Positive-definite kernel


Chapter 5: Sequential minimal optimization


Chapter 6: Regularization perspectives on support vector machines


Chapter 7: Representer theorem


Chapter 8: Radial basis function kernel


Chapter 9: Kernel perceptron


Chapter 10: Regularized least squares


(II) Answering the public top questions about kernel methods.


(III) Real world examples for the usage of kernel methods in many fields.


(IV) 17 appendices to explain, briefly, 266 emerging technologies in each industry to have 360-degree full understanding of kernel methods' technologies.


Who This Book Is For


Professionals, undergraduate and graduate students, enthusiasts, hobbyists, and those who want to go beyond basic knowledge or information for any kind of kernel methods.

ΠžΡ†Π΅Π½Π΅Ρ‚Π΅ ја Π΅-ΠΊΠ½ΠΈΠ³Π°Π²Π°

ΠšΠ°ΠΆΠ΅Ρ‚Π΅ Π½ΠΈ ΡˆΡ‚ΠΎ мислитС.

Π˜Π½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΈ Π·Π° Ρ‡ΠΈΡ‚Π°ΡšΠ΅

ΠŸΠ°ΠΌΠ΅Ρ‚Π½ΠΈ Ρ‚Π΅Π»Π΅Ρ„ΠΎΠ½ΠΈ ΠΈ Ρ‚Π°Π±Π»Π΅Ρ‚ΠΈ
Π˜Π½ΡΡ‚Π°Π»ΠΈΡ€Π°Ρ˜Ρ‚Π΅ ја Π°ΠΏΠ»ΠΈΠΊΠ°Ρ†ΠΈΡ˜Π°Ρ‚Π° Google Play Books Π·Π° Android ΠΈ iPad/iPhone. Автоматски сС синхронизира со смСтката ΠΈ Π²ΠΈ ΠΎΠ²ΠΎΠ·ΠΌΠΎΠΆΡƒΠ²Π° Π΄Π° Ρ‡ΠΈΡ‚Π°Ρ‚Π΅ онлајн ΠΈΠ»ΠΈ ΠΎΡ„Π»Π°Ρ˜Π½ ΠΊΠ°Π΄Π΅ ΠΈ Π΄Π° стС.
Π›Π°ΠΏΡ‚ΠΎΠΏΠΈ ΠΈ ΠΊΠΎΠΌΠΏΡ˜ΡƒΡ‚Π΅Ρ€ΠΈ
МоТС Π΄Π° ΡΠ»ΡƒΡˆΠ°Ρ‚Π΅ Π°ΡƒΠ΄ΠΈΠΎΠΊΠ½ΠΈΠ³ΠΈ ΠΊΡƒΠΏΠ΅Π½ΠΈ ΠΎΠ΄ Google Play со ΠΊΠΎΡ€ΠΈΡΡ‚Π΅ΡšΠ΅ Π½Π° Π²Π΅Π±-прСлистувачот Π½Π° ΠΊΠΎΠΌΠΏΡ˜ΡƒΡ‚Π΅Ρ€ΠΎΡ‚.
Π•-Ρ‡ΠΈΡ‚Π°Ρ‡ΠΈ ΠΈ Π΄Ρ€ΡƒΠ³ΠΈ ΡƒΡ€Π΅Π΄ΠΈ
Π—Π° Π΄Π° Ρ‡ΠΈΡ‚Π°Ρ‚Π΅ Π½Π° ΡƒΡ€Π΅Π΄ΠΈ со Π΅-мастило, ΠΊΠ°ΠΊΠΎ ΡˆΡ‚ΠΎ сС Π΅-Ρ‡ΠΈΡ‚Π°Ρ‡ΠΈΡ‚Π΅ Kobo, ќС Ρ‚Ρ€Π΅Π±Π° Π΄Π° ΠΏΡ€Π΅Π·Π΅ΠΌΠ΅Ρ‚Π΅ Π΄Π°Ρ‚ΠΎΡ‚Π΅ΠΊΠ° ΠΈ Π΄Π° ја ΠΏΡ€Π΅Ρ„Ρ€Π»ΠΈΡ‚Π΅ Π½Π° ΡƒΡ€Π΅Π΄ΠΎΡ‚. Π‘Π»Π΅Π΄Π΅Ρ‚Π΅ Π³ΠΈ Π΄Π΅Ρ‚Π°Π»Π½ΠΈΡ‚Π΅ упатства Π²ΠΎ Π¦Π΅Π½Ρ‚Π°Ρ€ΠΎΡ‚ Π·Π° помош Π·Π° ΠΏΡ€Π΅Ρ„Ρ€Π»Π°ΡšΠ΅ Π½Π° Π΄Π°Ρ‚ΠΎΡ‚Π΅ΠΊΠΈΡ‚Π΅ Π½Π° ΠΏΠΎΠ΄Π΄Ρ€ΠΆΠ°Π½ΠΈ Π΅-Ρ‡ΠΈΡ‚Π°Ρ‡ΠΈ.

Π”Ρ€ΡƒΠ³ΠΈ ΠΎΠ΄ ΡΠ΅Ρ€ΠΈΡ˜Π°Ρ‚Π°

ПовСќС од Fouad Sabry

Π‘Π»ΠΈΡ‡Π½ΠΈ Π΅-ΠΊΠ½ΠΈΠ³ΠΈ