Kernel Methods: Fundamentals and Applications

· Artificial Intelligence Livre 29 · One Billion Knowledgeable
E-book
103
Pages
Éligible
Les notes et avis ne sont pas vérifiés. En savoir plus

À propos de cet e-book

What Is Kernel Methods

In the field of machine learning, kernel machines are a class of methods for pattern analysis. The support-vector machine (also known as SVM) is the most well-known member of this group. Pattern analysis frequently makes use of specific kinds of algorithms known as kernel approaches. Utilizing linear classifiers in order to solve nonlinear issues is what these strategies entail. Finding and studying different sorts of general relations present in datasets is the overarching goal of pattern analysis. Kernel methods, on the other hand, require only a user-specified kernel, which can be thought of as a similarity function over all pairs of data points computed using inner products. This is in contrast to many algorithms that solve these tasks, which require the data in their raw representation to be explicitly transformed into feature vector representations via a user-specified feature map. According to the Representer theorem, although the feature map in kernel machines has an unlimited number of dimensions, all that is required as user input is a matrix with a finite number of dimensions. Without parallel processing, computation on kernel machines is painfully slow for data sets with more than a few thousand individual cases.


How You Will Benefit


(I) Insights, and validations about the following topics:


Chapter 1: Kernel method


Chapter 2: Support vector machine


Chapter 3: Radial basis function


Chapter 4: Positive-definite kernel


Chapter 5: Sequential minimal optimization


Chapter 6: Regularization perspectives on support vector machines


Chapter 7: Representer theorem


Chapter 8: Radial basis function kernel


Chapter 9: Kernel perceptron


Chapter 10: Regularized least squares


(II) Answering the public top questions about kernel methods.


(III) Real world examples for the usage of kernel methods in many fields.


(IV) 17 appendices to explain, briefly, 266 emerging technologies in each industry to have 360-degree full understanding of kernel methods' technologies.


Who This Book Is For


Professionals, undergraduate and graduate students, enthusiasts, hobbyists, and those who want to go beyond basic knowledge or information for any kind of kernel methods.

Donner une note à cet e-book

Dites-nous ce que vous en pensez.

Informations sur la lecture

Smartphones et tablettes
Installez l'application Google Play Livres pour Android et iPad ou iPhone. Elle se synchronise automatiquement avec votre compte et vous permet de lire des livres en ligne ou hors connexion, où que vous soyez.
Ordinateurs portables et de bureau
Vous pouvez écouter les livres audio achetés sur Google Play à l'aide du navigateur Web de votre ordinateur.
Liseuses et autres appareils
Pour lire sur des appareils e-Ink, comme les liseuses Kobo, vous devez télécharger un fichier et le transférer sur l'appareil en question. Suivez les instructions détaillées du Centre d'aide pour transférer les fichiers sur les liseuses compatibles.

Continuer la série

Autres livres par Fouad Sabry

E-books similaires