Kernel Methods: Fundamentals and Applications

ยท Artificial Intelligence แˆ˜แŒฝแˆแ 29 ยท One Billion Knowledgeable
แŠข-แˆ˜แŒฝแˆแ
103
แŒˆแŒพแ‰ฝ
แ‰ฅแ‰
แ‹จแ‰ฐแˆฐแŒกแ‰ต แ‹ฐแˆจแŒƒแ‹Žแ‰ฝ แŠฅแŠ“ แŒแˆแŒˆแˆ›แ‹Žแ‰ฝ แ‹จแ‰ฐแˆจแŒ‹แŒˆแŒก แŠ แ‹ญแ‹ฐแˆ‰แˆ ย แ‹จแ‰ แˆˆแŒ  แˆˆแˆ˜แˆจแ‹ณแ‰ต

แˆตแˆˆแ‹šแˆ… แŠข-แˆ˜แŒฝแˆแ

What Is Kernel Methods

In the field of machine learning, kernel machines are a class of methods for pattern analysis. The support-vector machine (also known as SVM) is the most well-known member of this group. Pattern analysis frequently makes use of specific kinds of algorithms known as kernel approaches. Utilizing linear classifiers in order to solve nonlinear issues is what these strategies entail. Finding and studying different sorts of general relations present in datasets is the overarching goal of pattern analysis. Kernel methods, on the other hand, require only a user-specified kernel, which can be thought of as a similarity function over all pairs of data points computed using inner products. This is in contrast to many algorithms that solve these tasks, which require the data in their raw representation to be explicitly transformed into feature vector representations via a user-specified feature map. According to the Representer theorem, although the feature map in kernel machines has an unlimited number of dimensions, all that is required as user input is a matrix with a finite number of dimensions. Without parallel processing, computation on kernel machines is painfully slow for data sets with more than a few thousand individual cases.


How You Will Benefit


(I) Insights, and validations about the following topics:


Chapter 1: Kernel method


Chapter 2: Support vector machine


Chapter 3: Radial basis function


Chapter 4: Positive-definite kernel


Chapter 5: Sequential minimal optimization


Chapter 6: Regularization perspectives on support vector machines


Chapter 7: Representer theorem


Chapter 8: Radial basis function kernel


Chapter 9: Kernel perceptron


Chapter 10: Regularized least squares


(II) Answering the public top questions about kernel methods.


(III) Real world examples for the usage of kernel methods in many fields.


(IV) 17 appendices to explain, briefly, 266 emerging technologies in each industry to have 360-degree full understanding of kernel methods' technologies.


Who This Book Is For


Professionals, undergraduate and graduate students, enthusiasts, hobbyists, and those who want to go beyond basic knowledge or information for any kind of kernel methods.

แˆˆแ‹šแˆ… แŠข-แˆ˜แŒฝแˆแ แ‹ฐแˆจแŒƒ แ‹ญแˆตแŒก

แˆแŠ• แŠฅแŠ•แ‹ฐแˆšแ‹ซแˆตแ‰ก แ‹ญแŠ•แŒˆแˆฉแŠ•แข

แ‹จแŠ•แ‰ฃแ‰ฅ แˆ˜แˆจแŒƒ

แ‹˜แˆ˜แŠ“แ‹Š แˆตแˆแŠฎแ‰ฝ แŠฅแŠ“ แŒกแ‰ฃแ‹Šแ‹Žแ‰ฝ
แ‹จGoogle Play แˆ˜แŒฝแˆแแ‰ต แˆ˜แ‰ฐแŒแ‰ แˆชแ‹ซแ‹แŠ• แˆˆAndroid แŠฅแŠ“ iPad/iPhone แ‹ซแ‹แˆญแ‹ฑแข แŠจแŠฅแˆญแˆตแ‹Ž แˆ˜แˆˆแ‹ซ แŒ‹แˆญ แ‰ แˆซแˆตแˆฐแˆญ แ‹ญแˆ˜แˆณแˆฐแˆ‹แˆ แŠฅแŠ“ แ‰ฃแˆ‰แ‰ แ‰ต แ‹จแ‰ตแˆ แ‰ฆแ‰ณ แ‰ แˆ˜แˆตแˆ˜แˆญ แˆ‹แ‹ญ แŠฅแŠ“ แŠจแˆ˜แˆตแˆ˜แˆญ แ‹แŒญ แŠฅแŠ•แ‹ฒแ‹ซแАแ‰ก แ‹ซแˆตแ‰ฝแˆแ‹Žแ‰ณแˆแข
แˆ‹แ•แ‰ถแ–แ‰ฝ แŠฅแŠ“ แŠฎแˆแ’แ‹แ‰ฐแˆฎแ‰ฝ
แ‹จแŠฎแˆแ’แ‹แ‰ฐแˆญแ‹ŽแŠ• แ‹ตแˆญ แŠ แˆณแˆฝ แ‰ฐแŒ แ‰…แˆ˜แ‹ แ‰ Google Play แˆ‹แ‹ญ แ‹จแ‰ฐแŒˆแ‹™ แŠฆแ‹ฒแ‹ฎ แˆ˜แŒฝแˆแแ‰ตแŠ• แˆ›แ‹ณแˆ˜แŒฅ แ‹ญแ‰ฝแˆ‹แˆ‰แข
แŠขแˆชแ‹ฐแˆฎแ‰ฝ แŠฅแŠ“ แˆŒแˆŽแ‰ฝ แˆ˜แˆณแˆชแ‹ซแ‹Žแ‰ฝ
แŠฅแŠ•แ‹ฐ Kobo แŠข-แŠ แŠ•แ‰ฃแ‰ขแ‹Žแ‰ฝ แ‰ฃแˆ‰ แŠข-แ‰€แˆˆแˆ แˆ˜แˆฃแˆชแ‹ซแ‹Žแ‰ฝ แˆ‹แ‹ญ แˆˆแˆ›แŠ•แ‰ แ‰ฅ แ‹แ‹ญแˆ แŠ แ‹แˆญแ‹ฐแ‹ แ‹ˆแ‹ฐ แˆ˜แˆฃแˆชแ‹ซแ‹Ž แˆ›แˆตแ‰ฐแˆ‹แˆˆแ แ‹ญแŠ–แˆญแ‰ฅแ‹Žแ‰ณแˆแข แ‹แ‹ญแˆŽแ‰นแŠ• แ‹ˆแ‹ฐแˆšแ‹ฐแŒˆแ‰ แŠข-แŠ แŠ•แ‰ฃแ‰ขแ‹Žแ‰ฝ แˆˆแˆ›แˆตแ‰ฐแˆ‹แˆˆแ แ‹แˆญแ‹แˆญ แ‹จแŠฅแŒˆแ‹› แˆ›แ‹•แŠจแˆ แˆ˜แˆ˜แˆชแ‹ซแ‹Žแ‰นแŠ• แ‹ญแŠจแ‰ฐแˆ‰แข

แ‰ฐแŠจแ‰ณแ‰ณแ‹ฉแŠ• แ‹ญแ‰€แŒฅแˆ‰

แ‰ฐแŒจแˆ›แˆช แ‰ Fouad Sabry

แ‰ฐแˆ˜แˆณแˆณแ‹ญ แŠข-แˆ˜แŒฝแˆแแ‰ต