A Generalization of Bohr-Mollerup's Theorem for Higher Order Convex Functions

·
· Developments in Mathematics Book 70 · Springer Nature
Ebook
323
Pages
Ratings and reviews aren’t verified  Learn More

About this ebook

In 1922, Harald Bohr and Johannes Mollerup established a remarkable characterization of the Euler gamma function using its log-convexity property. A decade later, Emil Artin investigated this result and used it to derive the basic properties of the gamma function using elementary methods of the calculus. Bohr-Mollerup's theorem was then adopted by Nicolas Bourbaki as the starting point for his exposition of the gamma function.

This open access book develops a far-reaching generalization of Bohr-Mollerup's theorem to higher order convex functions, along lines initiated by Wolfgang Krull, Roger Webster, and some others but going considerably further than past work. In particular, this generalization shows using elementary techniques that a very rich spectrum of functions satisfy analogues of several classical properties of the gamma function, including Bohr-Mollerup's theorem itself, Euler's reflection formula, Gauss' multiplication theorem, Stirling's formula, and Weierstrass' canonical factorization.

The scope of the theory developed in this work is illustrated through various examples, ranging from the gamma function itself and its variants and generalizations (q-gamma, polygamma, multiple gamma functions) to important special functions such as the Hurwitz zeta function and the generalized Stieltjes constants.

This volume is also an opportunity to honor the 100th anniversary of Bohr-Mollerup's theorem and to spark the interest of a large number of researchers in this beautiful theory.

About the author

Jean-Luc Marichal is an Associate Professor of Mathematics at the University of Luxembourg. He completed his PhD in Mathematics in 1998 at the University of Liège (Belgium) and has published about 100 journal papers on aggregation function theory, functional equations, non-additive measures and integrals, conjoint measurement theory, cooperative game theory, and system reliability theory.

Naïm Zenaïdi is a Senior Teaching and Outreach Assistant in the Department of Mathematics at the University of Liège (Belgium). He completed his PhD in Mathematics in 2013 at the University of Brussels (ULB, Belgium) in the field of differential geometry.

Rate this ebook

Tell us what you think.

Reading information

Smartphones and tablets
Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.
Laptops and computers
You can listen to audiobooks purchased on Google Play using your computer's web browser.
eReaders and other devices
To read on e-ink devices like Kobo eReaders, you'll need to download a file and transfer it to your device. Follow the detailed Help Center instructions to transfer the files to supported eReaders.