Stochastic Linear Programming Algorithms: A Comparison Based on a Model Management System

· Taylor & Francis
Ebook
164
Pages
Eligible
Ratings and reviews aren’t verified  Learn More

About this ebook

A computationally oriented comparison of solution algorithms for two stage and jointly chance constrained stochastic linear programming problems, this is the first book to present comparative computational results with several major stochastic programming solution approaches. The following methods are considered: regularized decomposition, stochastic decomposition and successive discrete approximation methods for two stage problems; cutting plane methods, and a reduced gradient method for jointly chance constrained problems. The first part of the book introduces the algorithms, including a unified approach to decomposition methods and their regularized counterparts. The second part addresses computer implementation of the methods, describes a testing environment based on a model management system, and presents comparative computational results with the various algorithms. Emphasis is on the computational behavior of the algorithms.

Rate this ebook

Tell us what you think.

Reading information

Smartphones and tablets
Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.
Laptops and computers
You can listen to audiobooks purchased on Google Play using your computer's web browser.
eReaders and other devices
To read on e-ink devices like Kobo eReaders, you'll need to download a file and transfer it to your device. Follow the detailed Help Center instructions to transfer the files to supported eReaders.