Equivariant Homotopy and Cohomology Theory: Dedicated to the Memory of Robert J. Piacenza

·
· Regional conference series in mathematics · American Mathematical Soc.
Ebook
366
Pages
Ratings and reviews aren’t verified  Learn More

About this ebook

This volume introduces equivariant homotopy, homology, and cohomology theory, along with various related topics in modern algebraic topology. It explains the main ideas behind some of the most striking recent advances in the subject. The book begins with a development of the equivariant algebraic topology of spaces culminating in a discussion of the Sullivan conjecture that emphasizes its relationship with classical Smith theory. It then introduces equivariant stable homotopy theory, the equivariant stable homotopy category, and the most important examples of equivariant cohomology theories. The basic machinery that is needed to make serious use of equivariant stable homotopy theory is presented next, along with discussions of the Segal conjecture and generalized Tate cohomology.Finally, the book gives an introduction to 'brave new algebra', the study of point-set level algebraic structures on spectra and its equivariant applications. Emphasis is placed on equivariant complex cobordism, and related results on that topic are presented in detail. It introduces many of the fundamental ideas and concepts of modern algebraic topology. It presents comprehensive material not found in any other book on the subject. It provides a coherent overview of many areas of current interest in algebraic topology. It surveys a great deal of material, explaining main ideas without getting bogged down in details.

Rate this ebook

Tell us what you think.

Reading information

Smartphones and tablets
Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.
Laptops and computers
You can listen to audiobooks purchased on Google Play using your computer's web browser.
eReaders and other devices
To read on e-ink devices like Kobo eReaders, you'll need to download a file and transfer it to your device. Follow the detailed Help Center instructions to transfer the files to supported eReaders.