Inverse Problems and Nonlinear Evolution Equations: Solutions, Darboux Matrices and Weyl–Titchmarsh Functions

· De Gruyter Studies in Mathematics Llibre 47 · Walter de Gruyter
Llibre electrònic
354
Pàgines
No es verifiquen les puntuacions ni les ressenyes Més informació

Sobre aquest llibre

This book is based on the method of operator identities and related theory of S-nodes, both developed by Lev Sakhnovich. The notion of the transfer matrix function generated by the S-node plays an essential role.

The authors present fundamental solutions of various important systems of differential equations using the transfer matrix function, that is, either directly in the form of the transfer matrix function or via the representation in this form of the corresponding Darboux matrix, when Bäcklund–Darboux transformations and explicit solutions are considered. The transfer matrix function representation of the fundamental solution yields solution of an inverse problem, namely, the problem to recover system from its Weyl function. Weyl theories of selfadjoint and skew-selfadjoint Dirac systems, related canonical systems, discrete Dirac systems, system auxiliary to the N-wave equation and a system rationally depending on the spectral parameter are obtained in this way.

The results on direct and inverse problems are applied in turn to the study of the initial-boundary value problems for integrable (nonlinear) wave equations via inverse spectral transformation method. Evolution of the Weyl function and solution of the initial-boundary value problem in a semi-strip are derived for many important nonlinear equations. Some uniqueness and global existence results are also proved in detail using evolution formulas.

The reading of the book requires only some basic knowledge of linear algebra, calculus and operator theory from the standard university courses.

Sobre l'autor

Alexander L. Sakhnovich, University of Vienna, Austria; Lev A. Sakhnovich, Milford, Connecticut, USA; Inna Ya. Roitberg, Universität Leipzig, Germany.

Puntua aquest llibre electrònic

Dona'ns la teva opinió.

Informació de lectura

Telèfons intel·ligents i tauletes
Instal·la l'aplicació Google Play Llibres per a Android i per a iPad i iPhone. Aquesta aplicació se sincronitza automàticament amb el compte i et permet llegir llibres en línia o sense connexió a qualsevol lloc.
Ordinadors portàtils i ordinadors de taula
Pots escoltar els audiollibres que has comprat a Google Play amb el navegador web de l'ordinador.
Lectors de llibres electrònics i altres dispositius
Per llegir en dispositius de tinta electrònica, com ara lectors de llibres electrònics Kobo, hauràs de baixar un fitxer i transferir-lo al dispositiu. Segueix les instruccions detallades del Centre d'ajuda per transferir els fitxers a lectors de llibres electrònics compatibles.