Invariant Subspaces

Β· Springer Science & Business Media
Π•Π»Π΅ΠΊΡ‚Ρ€ΠΎΠ½Π½Π° ΠΊΠ½ΠΈΠ³Π°
222
Π‘Ρ‚Ρ€Π°Π½ΠΈΡ†ΠΈ
ΠžΡ†Π΅Π½ΠΊΠΈΡ‚Π΅ ΠΈ ΠΎΡ‚Π·ΠΈΠ²ΠΈΡ‚Π΅ Π½Π΅ са ΠΏΠΎΡ‚Π²ΡŠΡ€Π΄Π΅Π½ΠΈ  НаучСтС ΠΏΠΎΠ²Π΅Ρ‡Π΅

Всичко Π·Π° Ρ‚Π°Π·ΠΈ Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΎΠ½Π½Π° ΠΊΠ½ΠΈΠ³Π°

In recent years there has been a large amount of work on invariant subspaces, motivated by interest in the structure of non-self-adjoint of the results have been obtained in operators on Hilbert space. Some the context of certain general studies: the theory of the characteristic operator function, initiated by Livsic; the study of triangular models by Brodskii and co-workers; and the unitary dilation theory of Sz. Nagy and Foia!? Other theorems have proofs and interest independent of any particular structure theory. Since the leading workers in each of the structure theories have written excellent expositions of their work, (cf. Sz.-Nagy-Foia!? [1], Brodskii [1], and Gohberg-Krein [1], [2]), in this book we have concentrated on results independent of these theories. We hope that we have given a reasonably complete survey of such results and suggest that readers consult the above references for additional information. The table of contents indicates the material covered. We have restricted ourselves to operators on separable Hilbert space, in spite of the fact that most of the theorems are valid in all Hilbert spaces and many hold in Banach spaces as well. We felt that this restriction was sensible since it eases the exposition and since the separable-Hilbert space case of each of the theorems is generally the most interesting and potentially the most useful case.

ΠžΡ†Π΅Π½Π΅Ρ‚Π΅ Ρ‚Π°Π·ΠΈ Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΎΠ½Π½Π° ΠΊΠ½ΠΈΠ³Π°

ΠšΠ°ΠΆΠ΅Ρ‚Π΅ Π½ΠΈ ΠΊΠ°ΠΊΠ²ΠΎ мислитС.

Π˜Π½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΡ Π·Π° Ρ‡Π΅Ρ‚Π΅Π½Π΅Ρ‚ΠΎ

Π‘ΠΌΠ°Ρ€Ρ‚Ρ„ΠΎΠ½ΠΈ ΠΈ Ρ‚Π°Π±Π»Π΅Ρ‚ΠΈ
Π˜Π½ΡΡ‚Π°Π»ΠΈΡ€Π°ΠΉΡ‚Π΅ ΠΏΡ€ΠΈΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅Ρ‚ΠΎ Google Play Книги Π·Π° Android ΠΈ iPad/iPhone. Π’ΠΎ Π°Π²Ρ‚ΠΎΠΌΠ°Ρ‚ΠΈΡ‡Π½ΠΎ сС синхронизира с ΠΏΡ€ΠΎΡ„ΠΈΠ»Π° Π²ΠΈ ΠΈ Π²ΠΈ позволява Π΄Π° Ρ‡Π΅Ρ‚Π΅Ρ‚Π΅ ΠΎΠ½Π»Π°ΠΉΠ½ ΠΈΠ»ΠΈ ΠΎΡ„Π»Π°ΠΉΠ½, ΠΊΡŠΠ΄Π΅Ρ‚ΠΎ ΠΈ Π΄Π° стС.
Π›Π°ΠΏΡ‚ΠΎΠΏΠΈ ΠΈ ΠΊΠΎΠΌΠΏΡŽΡ‚Ρ€ΠΈ
ΠœΠΎΠΆΠ΅Ρ‚Π΅ Π΄Π° ΡΠ»ΡƒΡˆΠ°Ρ‚Π΅ Π·Π°ΠΊΡƒΠΏΠ΅Π½ΠΈΡ‚Π΅ ΠΎΡ‚ Google Play Π°ΡƒΠ΄ΠΈΠΎΠΊΠ½ΠΈΠ³ΠΈ посрСдством ΡƒΠ΅Π± Π±Ρ€Π°ΡƒΠ·ΡŠΡ€Π° Π½Π° ΠΊΠΎΠΌΠΏΡŽΡ‚ΡŠΡ€Π° си.
Π•Π»Π΅ΠΊΡ‚Ρ€ΠΎΠ½Π½ΠΈ Ρ‡Π΅Ρ‚Ρ†ΠΈ ΠΈ Π΄Ρ€ΡƒΠ³ΠΈ устройства
Π—Π° Π΄Π° Ρ‡Π΅Ρ‚Π΅Ρ‚Π΅ Π½Π° устройства с Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΎΠ½Π½ΠΎ мастило, ΠΊΠ°Ρ‚ΠΎ Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€ Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΎΠ½Π½ΠΈΡ‚Π΅ Ρ‡Π΅Ρ‚Ρ†ΠΈ ΠΎΡ‚ Kobo, трябва Π΄Π° ΠΈΠ·Ρ‚Π΅Π³Π»ΠΈΡ‚Π΅ Ρ„Π°ΠΉΠ» ΠΈ Π΄Π° Π³ΠΎ ΠΏΡ€Π΅Ρ…Π²ΡŠΡ€Π»ΠΈΡ‚Π΅ Π½Π° устройството си. Π˜Π·ΠΏΡŠΠ»Π½Π΅Ρ‚Π΅ ΠΏΠΎΠ΄Ρ€ΠΎΠ±Π½ΠΈΡ‚Π΅ инструкции Π² ΠŸΠΎΠΌΠΎΡ‰Π½ΠΈΡ Ρ†Π΅Π½Ρ‚ΡŠΡ€, Π·Π° Π΄Π° ΠΏΡ€Π΅Ρ…Π²ΡŠΡ€Π»ΠΈΡ‚Π΅ Ρ„Π°ΠΉΠ»ΠΎΠ²Π΅Ρ‚Π΅ Π² ΠΏΠΎΠ΄Π΄ΡŠΡ€ΠΆΠ°Π½ΠΈΡ‚Π΅ Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΎΠ½Π½ΠΈ Ρ‡Π΅Ρ‚Ρ†ΠΈ.