Introduction to Ramsey Spaces

· Annals of Mathematics Studies Buku 174 · Princeton University Press
4.0
2 ulasan
e-Buku
296
Halaman
Layak
Rating dan ulasan tidak disahkan  Ketahui Lebih Lanjut

Perihal e-buku ini

Ramsey theory is a fast-growing area of combinatorics with deep connections to other fields of mathematics such as topological dynamics, ergodic theory, mathematical logic, and algebra. The area of Ramsey theory dealing with Ramsey-type phenomena in higher dimensions is particularly useful. Introduction to Ramsey Spaces presents in a systematic way a method for building higher-dimensional Ramsey spaces from basic one-dimensional principles. It is the first book-length treatment of this area of Ramsey theory, and emphasizes applications for related and surrounding fields of mathematics, such as set theory, combinatorics, real and functional analysis, and topology. In order to facilitate accessibility, the book gives the method in its axiomatic form with examples that cover many important parts of Ramsey theory both finite and infinite.


An exciting new direction for combinatorics, this book will interest graduate students and researchers working in mathematical subdisciplines requiring the mastery and practice of high-dimensional Ramsey theory.

Rating dan ulasan

4.0
2 ulasan

Perihal pengarang

Stevo Todorcevic is professor of mathematics at the University of Toronto and holds senior research positions at the CNRS in Paris and SANU in Belgrade. He is the author or coauthor of several books, including Walks on Ordinals and Their Characteristics and Ramsey Methods in Analysis.

Berikan rating untuk e-Buku ini

Beritahu kami pendapat anda.

Maklumat pembacaan

Telefon pintar dan tablet
Pasang apl Google Play Books untuk Android dan iPad/iPhone. Apl ini menyegerak secara automatik dengan akaun anda dan membenarkan anda membaca di dalam atau luar talian, walau di mana jua anda berada.
Komputer riba dan komputer
Anda boleh mendengar buku audio yang dibeli di Google Play menggunakan penyemak imbas web komputer anda.
eReader dan peranti lain
Untuk membaca pada peranti e-dakwat seperti Kobo eReaders, anda perlu memuat turun fail dan memindahkan fail itu ke peranti anda. Sila ikut arahan Pusat Bantuan yang terperinci untuk memindahkan fail ke e-Pembaca yang disokong.