Introduction to Mathematical Structures and Proofs: Edition 2

· Springer Science & Business Media
4,0
2 avis
E-book
401
Pages
Les notes et avis ne sont pas vérifiés. En savoir plus

À propos de cet e-book

As a student moves from basic calculus courses into upper-division courses in linear and abstract algebra, real and complex analysis, number theory, topology, and so on, a "bridge" course can help ensure a smooth transition. Introduction to Mathematical Structures and Proofs is a textbook intended for such a course, or for self-study. This book introduces an array of fundamental mathematical structures. It also explores the delicate balance of intuition and rigor—and the flexible thinking—required to prove a nontrivial result. In short, this book seeks to enhance the mathematical maturity of the reader.

The new material in this second edition includes a section on graph theory, several new sections on number theory (including primitive roots, with an application to card-shuffling), and a brief introduction to the complex numbers (including a section on the arithmetic of the Gaussian integers). Solutions for even numbered exercises are available on springer.com forinstructors adopting the text for a course.

Notes et avis

4,0
2 avis

À propos de l'auteur

Larry Gerstein's primary areas of research have been in quadratic forms and number theory and he has published extensively in these areas. The author's first edition of "Introduction to Mathematical Structures and Proofs" has sold to date (8/2/2010) over 6000 copies and has gone through 5 printings. Gerstein himself has a transition course at UC, Santa Barbara (Math 8-A transition to higher mathematics) from his book since its first publication date. The first edition also received 2 glowing reviews by Steve Krantz for the American Mathematical Monthly, and S. Gottwald for Zentralblatt.

Donner une note à cet e-book

Dites-nous ce que vous en pensez.

Informations sur la lecture

Smartphones et tablettes
Installez l'application Google Play Livres pour Android et iPad ou iPhone. Elle se synchronise automatiquement avec votre compte et vous permet de lire des livres en ligne ou hors connexion, où que vous soyez.
Ordinateurs portables et de bureau
Vous pouvez écouter les livres audio achetés sur Google Play à l'aide du navigateur Web de votre ordinateur.
Liseuses et autres appareils
Pour lire sur des appareils e-Ink, comme les liseuses Kobo, vous devez télécharger un fichier et le transférer sur l'appareil en question. Suivez les instructions détaillées du Centre d'aide pour transférer les fichiers sur les liseuses compatibles.