Introduction to Mathematical Structures and Proofs: Edition 2

· Springer Science & Business Media
4,0
2 reseñas
eBook
401
Páginas
Las valoraciones y las reseñas no se verifican. Más información

Información sobre este eBook

As a student moves from basic calculus courses into upper-division courses in linear and abstract algebra, real and complex analysis, number theory, topology, and so on, a "bridge" course can help ensure a smooth transition. Introduction to Mathematical Structures and Proofs is a textbook intended for such a course, or for self-study. This book introduces an array of fundamental mathematical structures. It also explores the delicate balance of intuition and rigor—and the flexible thinking—required to prove a nontrivial result. In short, this book seeks to enhance the mathematical maturity of the reader.

The new material in this second edition includes a section on graph theory, several new sections on number theory (including primitive roots, with an application to card-shuffling), and a brief introduction to the complex numbers (including a section on the arithmetic of the Gaussian integers). Solutions for even numbered exercises are available on springer.com forinstructors adopting the text for a course.

Valoraciones y reseñas

4,0
2 reseñas

Acerca del autor

Larry Gerstein's primary areas of research have been in quadratic forms and number theory and he has published extensively in these areas. The author's first edition of "Introduction to Mathematical Structures and Proofs" has sold to date (8/2/2010) over 6000 copies and has gone through 5 printings. Gerstein himself has a transition course at UC, Santa Barbara (Math 8-A transition to higher mathematics) from his book since its first publication date. The first edition also received 2 glowing reviews by Steve Krantz for the American Mathematical Monthly, and S. Gottwald for Zentralblatt.

Valorar este eBook

Danos tu opinión.

Información sobre cómo leer

Smartphones y tablets
Instala la aplicación Google Play Libros para Android y iPad/iPhone. Se sincroniza automáticamente con tu cuenta y te permite leer contenido online o sin conexión estés donde estés.
Ordenadores portátiles y de escritorio
Puedes usar el navegador web del ordenador para escuchar audiolibros que hayas comprado en Google Play.
eReaders y otros dispositivos
Para leer en dispositivos de tinta electrónica, como los lectores de libros electrónicos de Kobo, es necesario descargar un archivo y transferirlo al dispositivo. Sigue las instrucciones detalladas del Centro de Ayuda para transferir archivos a lectores de libros electrónicos compatibles.