Introduction to Mathematical Structures and Proofs: Edition 2

· Springer Science & Business Media
4,0
2 resensies
E-boek
401
Bladsye
Graderings en resensies word nie geverifieer nie. Kom meer te wete

Meer oor hierdie e-boek

As a student moves from basic calculus courses into upper-division courses in linear and abstract algebra, real and complex analysis, number theory, topology, and so on, a "bridge" course can help ensure a smooth transition. Introduction to Mathematical Structures and Proofs is a textbook intended for such a course, or for self-study. This book introduces an array of fundamental mathematical structures. It also explores the delicate balance of intuition and rigor—and the flexible thinking—required to prove a nontrivial result. In short, this book seeks to enhance the mathematical maturity of the reader.

The new material in this second edition includes a section on graph theory, several new sections on number theory (including primitive roots, with an application to card-shuffling), and a brief introduction to the complex numbers (including a section on the arithmetic of the Gaussian integers). Solutions for even numbered exercises are available on springer.com forinstructors adopting the text for a course.

Graderings en resensies

4,0
2 resensies

Meer oor die skrywer

Larry Gerstein's primary areas of research have been in quadratic forms and number theory and he has published extensively in these areas. The author's first edition of "Introduction to Mathematical Structures and Proofs" has sold to date (8/2/2010) over 6000 copies and has gone through 5 printings. Gerstein himself has a transition course at UC, Santa Barbara (Math 8-A transition to higher mathematics) from his book since its first publication date. The first edition also received 2 glowing reviews by Steve Krantz for the American Mathematical Monthly, and S. Gottwald for Zentralblatt.

Gradeer hierdie e-boek

Sê vir ons wat jy dink.

Lees inligting

Slimfone en tablette
Installeer die Google Play Boeke-app vir Android en iPad/iPhone. Dit sinkroniseer outomaties met jou rekening en maak dit vir jou moontlik om aanlyn of vanlyn te lees waar jy ook al is.
Skootrekenaars en rekenaars
Jy kan jou rekenaar se webblaaier gebruik om na oudioboeke wat jy op Google Play gekoop het, te luister.
E-lesers en ander toestelle
Om op e-inktoestelle soos Kobo-e-lesers te lees, moet jy ’n lêer aflaai en dit na jou toestel toe oordra. Volg die gedetailleerde hulpsentrumaanwysings om die lêers na ondersteunde e-lesers toe oor te dra.