Intersection Cohomology

· Springer Science & Business Media
e-Buku
234
Halaman
Rating dan ulasan tidak disahkan  Ketahui Lebih Lanjut

Perihal e-buku ini

This volume contains the Notes of a seminar on Intersection Ho- logy which met weekly during the Spring 1983 at the University of Bern, Switzerland. Its main purpose was to give an introduction to the pie- wise linear and sheaf theoretic aspects of the theory Goresky and R. MacPherson, Topology 19(1980) 135-162, Inv. Math. 72(1983) 17-130) and to some of its applications, for an audience assumed to have some familiarity with algebraic topology and sheaf theory. These Notes can be divided roughly into three parts. The first one to is chiefly devoted to the piecewise linear version of the theory: In A. Haefliger describes intersection homology in the piecewise linear context; II, by N. Habegger, prepares the transition to the sheaf theoretic point of view and III, by M. Goresky and R. Mac- Pherson, provides an example of computation of intersection homology. The spaces on which intersection homology is defined are assumed to admit topological stratifications with strong local triviality p- perties (cf I or V). Chapter IV, by N. A'Campo, gives some indications on how the existence of such stratifications is proved on complex analytic spaces. The primary goal of V is to describe intersection homology, or rather cohomology, in the framework of sheaf theory and to prove its main basic properties, following the second paper quoted above. Fa- liarity with standard sheaf theory, as in Godement's book, is assumed.

Berikan rating untuk e-Buku ini

Beritahu kami pendapat anda.

Maklumat pembacaan

Telefon pintar dan tablet
Pasang apl Google Play Books untuk Android dan iPad/iPhone. Apl ini menyegerak secara automatik dengan akaun anda dan membenarkan anda membaca di dalam atau luar talian, walau di mana jua anda berada.
Komputer riba dan komputer
Anda boleh mendengar buku audio yang dibeli di Google Play menggunakan penyemak imbas web komputer anda.
eReader dan peranti lain
Untuk membaca pada peranti e-dakwat seperti Kobo eReaders, anda perlu memuat turun fail dan memindahkan fail itu ke peranti anda. Sila ikut arahan Pusat Bantuan yang terperinci untuk memindahkan fail ke e-Pembaca yang disokong.