Interpolation periodischer Funktionen

· GRIN Verlag
电子书
12
符合条件
评分和评价未经验证  了解详情

关于此电子书

Studienarbeit aus dem Jahr 2002 im Fachbereich Mathematik - Analysis, Note: gut (2), Martin-Luther-Universität Halle-Wittenberg (Numerische Mathematik), Veranstaltung: Numerik-Praktikum, Sprache: Deutsch, Abstract: Häufig kommt es vor, dass in den verschiedensten Bereichen Daten dargestellt werden müssen, die einen periodischen Verlauf annehmen. Dies ist zum Beispiel in der Medizin – bei der Darstellung von Fieberkurven, Herzfunktionen o.ä. – der Fall. Aber auch bei den Oszillographen in der Physik oder bei der geschichtlichen Analogrechnung oder bei Berechnungen durch das Messen von Strömen. Um diese Daten praktisch anschaulich darstellen zu können, empfiehlt es sich, diese durch eine Kurve zu interpolieren – was in der Praxis auch so gemacht wird. Hier kommt nun die Numerischen Mathematiker ins Spiel, zu dessen Teilgebieten ja die Interpolation von Datenkurven/ Funktion gehört. Die nächste Frage ist nun, auf welche Weise diese periodischen Datenkurven oder Funktionen interpoliert werden sollen. Als Ausgangsfunktion wären hier Polynome, Splines oder auch Winkelfunktionen denkbar. Welche am besten für die Interpolation solcher periodischer Datenkurven oder Funktionen geeignet sind, soll im nächsten Kapitel erörtert werden. Weiter möchte ich dann auf die theoretischen Grundlagen der Interpolation periodischer Funktionen eingehen, im vierten Kapitel versuchen, ein Programm dazu zu erarbeiten und zum Schluss ein selbstgewähltes Beispiel mit meinem Programm zu bearbeiten und gegebenenfalls zu diskutieren.

为此电子书评分

欢迎向我们提供反馈意见。

如何阅读

智能手机和平板电脑
只要安装 AndroidiPad/iPhone 版的 Google Play 图书应用,不仅应用内容会自动与您的账号同步,还能让您随时随地在线或离线阅览图书。
笔记本电脑和台式机
您可以使用计算机的网络浏览器聆听您在 Google Play 购买的有声读物。
电子阅读器和其他设备
如果要在 Kobo 电子阅读器等电子墨水屏设备上阅读,您需要下载一个文件,并将其传输到相应设备上。若要将文件传输到受支持的电子阅读器上,请按帮助中心内的详细说明操作。