Induction in Geometry

·
· Courier Dover Publications
Livro eletrónico
176
Páginas
As classificações e as críticas não são validadas  Saiba mais

Acerca deste livro eletrónico

Induction in Geometry discusses the application of the method of mathematical induction to the solution of geometric problems, some of which are quite intricate. The book contains 37 examples with detailed solutions and 40 for which only brief hints are provided. Most of the material requires only a background in high school algebra and plane geometry; chapter six assumes some knowledge of solid geometry, and the text occasionally employs formulas from trigonometry. Chapters are self-contained, so readers may omit those for which they are unprepared. 
To provide additional background, this volume incorporates the concise text, The Method of Mathematical Induction. This approach introduces this technique of mathematical proof via many examples from algebra, geometry, and trigonometry, and in greater detail than standard texts. A background in high school algebra will largely suffice; later problems require some knowledge of trigonometry. The combination of solved problems within the text and those left for readers to work on, with solutions provided at the end, makes this volume especially practical for independent study.

Acerca do autor

L. I. Golovina was on the faculty of Moscow State University.
I. M. Yaglom (1921–88) was affiliated with Moscow State Pedagogical Institute. He wrote several popular books on mathematics, including these Dover publications: Challenging Mathematical Problems with Elementary Solutions (with A. M. Yaglom) in two volumes, and The U.S.S.R. Olympiad Problem Book (with D. O. Shklarsky and N. N. Chentzov).
I. S. Sominskii was on the faculty of the Novgorod Pedagogical Institute.

Classifique este livro eletrónico

Dê-nos a sua opinião.

Informações de leitura

Smartphones e tablets
Instale a app Google Play Livros para Android e iPad/iPhone. A aplicação é sincronizada automaticamente com a sua conta e permite-lhe ler online ou offline, onde quer que esteja.
Portáteis e computadores
Pode ouvir audiolivros comprados no Google Play através do navegador de Internet do seu computador.
eReaders e outros dispositivos
Para ler em dispositivos e-ink, como e-readers Kobo, tem de transferir um ficheiro e movê-lo para o seu dispositivo. Siga as instruções detalhadas do Centro de Ajuda para transferir os ficheiros para os e-readers suportados.