Impossible Math Problems

· Publifye AS
E-knjiga
66
Strani
Primerno
Ocene in mnenja niso preverjeni. Več o tem

O tej e-knjigi

Impossible Math Problems tackles some of mathematics' most enduring enigmas, exploring complex equations and unsolved problems that have captivated mathematicians for generations. The book investigates the significance and historical context of these problems, highlighting ongoing attempts at solutions. For instance, the Riemann Hypothesis, a central focus, could unlock secrets about prime number distribution, with implications for cryptography and computer science. Similarly, the Beal Conjecture, a seemingly simple equation, has deep connections to number theory. This book uniquely emphasizes the human side of mathematical discovery, delving into the lives and motivations of mathematicians dedicated to these challenges. Assuming only a basic understanding of high school algebra and geometry, the book introduces more advanced concepts as it progresses. Beginning with core mathematical concepts, each chapter then dedicates itself to a specific problem, outlining its history and significance. Readers will appreciate the book's accessible language, aimed at bridging the gap between technical literature and a general audience. By investigating these challenges, new mathematical tools and insights are revealed, illustrating how the pursuit of 'impossible' problems drives mathematical innovation. The exploration of these unsolved math problems provides a glimpse into the forefront of mathematical research.

Ocenite to e-knjigo

Povejte nam svoje mnenje.

Informacije o branju

Pametni telefoni in tablični računalniki
Namestite aplikacijo Knjige Google Play za Android in iPad/iPhone. Samodejno se sinhronizira z računom in kjer koli omogoča branje s povezavo ali brez nje.
Prenosni in namizni računalniki
Poslušate lahko zvočne knjige, ki ste jih kupili v Googlu Play v brskalniku računalnika.
Bralniki e-knjig in druge naprave
Če želite brati v napravah, ki imajo zaslone z e-črnilom, kot so e-bralniki Kobo, morate prenesti datoteko in jo kopirati v napravo. Podrobna navodila za prenos datotek v podprte bralnike e-knjig najdete v centru za pomoč.