Hyperbolicity of Projective Hypersurfaces

·
· IMPA Monographs 5. књига · Springer
Е-књига
89
Страница
Оцене и рецензије нису верификоване  Сазнајте више

О овој е-књизи

This book presents recent advances on Kobayashi hyperbolicity in complex geometry, especially in connection with projective hypersurfaces. This is a very active field, not least because of the fascinating relations with complex algebraic and arithmetic geometry. Foundational works of Serge Lang and Paul A. Vojta, among others, resulted in precise conjectures regarding the interplay of these research fields (e.g. existence of Zariski dense entire curves should correspond to the (potential) density of rational points).

Perhaps one of the conjectures which generated most activity in Kobayashi hyperbolicity theory is the one formed by Kobayashi himself in 1970 which predicts that a very general projective hypersurface of degree large enough does not contain any (non-constant) entire curves. Since the seminal work of Green and Griffiths in 1979, later refined by J.-P. Demailly, J. Noguchi, Y.-T. Siu and others, it became clear that a possible general strategy to attack this problem was to look at particular algebraic differential equations (jet differentials) that every entire curve must satisfy. This has led to some several spectacular results. Describing the state of the art around this conjecture is the main goal of this work.

О аутору

Simone Diverio is a 1st class CNRS researcher at the Institute of Mathematics of Jusseau - Paris Rive Gauche, France. He received his PhD (2008) jointly from the University of Grenoble I, France, and Sapienza University of Rome, Italy. In 2010 he was awarded the Prime d'Excellence Scientifique by the CNRS. Erwan Rousseau is a professor at Aix-Marseille University, France. He did his PhD at Brest University, France (2004), with post-doc studies at the University of Quebéc, Canada and research at the University of Strasbourg (2010). In 2007, he was awarded the Cours Peccot du Collége de France.

Оцените ову е-књигу

Јавите нам своје мишљење.

Информације о читању

Паметни телефони и таблети
Инсталирајте апликацију Google Play књиге за Android и iPad/iPhone. Аутоматски се синхронизује са налогом и омогућава вам да читате онлајн и офлајн где год да се налазите.
Лаптопови и рачунари
Можете да слушате аудио-књиге купљене на Google Play-у помоћу веб-прегледача на рачунару.
Е-читачи и други уређаји
Да бисте читали на уређајима које користе е-мастило, као што су Kobo е-читачи, треба да преузмете фајл и пренесете га на уређај. Пратите детаљна упутства из центра за помоћ да бисте пренели фајлове у подржане е-читаче.