Homogeneous Ordered Graphs, Metrically Homogeneous Graphs, and Beyond: Volume 1, Ordered Graphs and Distanced Graphs

· Lecture Notes in Logic 53. kniha · Cambridge University Press
E‑kniha
356
Počet strán
Hodnotenia a recenzie nie sú overené  Ďalšie informácie

Táto e‑kniha

This is the first of two volumes by Professor Cherlin presenting the state of the art in the classification of homogeneous structures in binary languages and related problems in the intersection of model theory and combinatorics. Researchers and graduate students in the area will find in these volumes many far-reaching results and interesting new research directions to pursue. In this volume, Cherlin develops a complete classification of homogeneous ordered graphs and provides a full proof. He then proposes a new family of metrically homogeneous graphs, a weakening of the usual homogeneity condition. A general classification conjecture is presented, together with general structure theory and applications to a general classification conjecture for such graphs. It also includes introductory chapters giving an overview of the results and methods of both volumes, and an appendix surveying recent developments in the area. An extensive accompanying bibliography of related literature, organized by topic, is available online.

O autorovi

Gregory Cherlin is Distinguished Professor Emeritus at Rutgers University. He has worked on applications of model theory to algebra and combinatorics for half a century, and has published four books and over 100 articles on model theory and its applications.

Ohodnoťte túto elektronickú knihu

Povedzte nám svoj názor.

Informácie o dostupnosti

Smartfóny a tablety
Nainštalujte si aplikáciu Knihy Google Play pre AndroidiPad/iPhone. Automaticky sa synchronizuje s vaším účtom a umožňuje čítať online aj offline, nech už ste kdekoľvek.
Laptopy a počítače
Audioknihy zakúpené v službe Google Play môžete počúvať prostredníctvom webového prehliadača v počítači.
Čítačky elektronických kníh a ďalšie zariadenia
Ak chcete tento obsah čítať v zariadeniach využívajúcich elektronický atrament, ako sú čítačky e‑kníh Kobo, musíte stiahnuť príslušný súbor a preniesť ho do svojho zariadenia. Pri prenose súborov do podporovaných čítačiek e‑kníh postupujte podľa podrobných pokynov v centre pomoci.