Handbook of Markov Chain Monte Carlo

ยท ยท ยท
ยท CRC Press
4,3
3 แƒ›แƒ˜แƒ›แƒแƒฎแƒ˜แƒšแƒ•แƒ
แƒ”แƒšแƒฌแƒ˜แƒ’แƒœแƒ˜
619
แƒ’แƒ•แƒ”แƒ แƒ“แƒ˜
แƒ›แƒ˜แƒกแƒแƒฆแƒ”แƒ‘แƒ˜
แƒ แƒ”แƒ˜แƒขแƒ˜แƒœแƒ’แƒ”แƒ‘แƒ˜ แƒ“แƒ แƒ›แƒ˜แƒ›แƒแƒฎแƒ˜แƒšแƒ•แƒ”แƒ‘แƒ˜ แƒ“แƒแƒฃแƒ“แƒแƒกแƒขแƒฃแƒ แƒ”แƒ‘แƒ”แƒšแƒ˜แƒ ย แƒจแƒ”แƒ˜แƒขแƒงแƒ•แƒ”แƒ— แƒ›แƒ”แƒขแƒ˜

แƒแƒ› แƒ”แƒšแƒฌแƒ˜แƒ’แƒœแƒ˜แƒก แƒจแƒ”แƒกแƒแƒฎแƒ”แƒ‘

Since their popularization in the 1990s, Markov chain Monte Carlo (MCMC) methods have revolutionized statistical computing and have had an especially profound impact on the practice of Bayesian statistics. Furthermore, MCMC methods have enabled the development and use of intricate models in an astonishing array of disciplines as diverse as fisherie

แƒจแƒ”แƒคแƒแƒกแƒ”แƒ‘แƒ”แƒ‘แƒ˜ แƒ“แƒ แƒ›แƒ˜แƒ›แƒแƒฎแƒ˜แƒšแƒ•แƒ”แƒ‘แƒ˜

4,3
3 แƒ›แƒ˜แƒ›แƒแƒฎแƒ˜แƒšแƒ•แƒ

แƒแƒ•แƒขแƒแƒ แƒ˜แƒก แƒจแƒ”แƒกแƒแƒฎแƒ”แƒ‘

Steve Brooks, Andrew Gelman, Galin Jones, Xiao-Li Meng

แƒจแƒ”แƒแƒคแƒแƒกแƒ”แƒ— แƒ”แƒก แƒ”แƒšแƒฌแƒ˜แƒ’แƒœแƒ˜

แƒ’แƒ•แƒ˜แƒ—แƒฎแƒแƒ แƒ˜แƒ— แƒ—แƒฅแƒ•แƒ”แƒœแƒ˜ แƒแƒ–แƒ แƒ˜.

แƒ˜แƒœแƒคแƒแƒ แƒ›แƒแƒชแƒ˜แƒ แƒฌแƒแƒ™แƒ˜แƒ—แƒฎแƒ•แƒแƒกแƒ—แƒแƒœ แƒ“แƒแƒ™แƒแƒ•แƒจแƒ˜แƒ แƒ”แƒ‘แƒ˜แƒ—

แƒกแƒ›แƒแƒ แƒขแƒคแƒแƒœแƒ”แƒ‘แƒ˜ แƒ“แƒ แƒขแƒแƒ‘แƒšแƒ”แƒขแƒ”แƒ‘แƒ˜
แƒ“แƒแƒแƒ˜แƒœแƒกแƒขแƒแƒšแƒ˜แƒ แƒ”แƒ— Google Play Books แƒแƒžแƒ˜ Android แƒ“แƒ iPad/iPhone แƒ›แƒแƒฌแƒงแƒแƒ‘แƒ˜แƒšแƒแƒ‘แƒ”แƒ‘แƒ˜แƒกแƒ—แƒ•แƒ˜แƒก. แƒ˜แƒก แƒแƒ•แƒขแƒแƒ›แƒแƒขแƒฃแƒ แƒแƒ“ แƒ’แƒแƒœแƒแƒฎแƒแƒ แƒชแƒ˜แƒ”แƒšแƒ”แƒ‘แƒก แƒกแƒ˜แƒœแƒฅแƒ แƒแƒœแƒ˜แƒ–แƒแƒชแƒ˜แƒแƒก แƒ—แƒฅแƒ•แƒ”แƒœแƒก แƒแƒœแƒ’แƒแƒ แƒ˜แƒจแƒ—แƒแƒœ แƒ“แƒ แƒกแƒแƒจแƒฃแƒแƒšแƒ”แƒ‘แƒแƒก แƒ›แƒแƒ’แƒชแƒ”แƒ›แƒ—, แƒฌแƒแƒ˜แƒ™แƒ˜แƒ—แƒฎแƒแƒ— แƒกแƒแƒกแƒฃแƒ แƒ•แƒ”แƒšแƒ˜ แƒ™แƒแƒœแƒขแƒ”แƒœแƒขแƒ˜ แƒœแƒ”แƒ‘แƒ˜แƒกแƒ›แƒ˜แƒ”แƒ  แƒแƒ“แƒ’แƒ˜แƒšแƒแƒก, แƒ แƒแƒ’แƒแƒ แƒช แƒแƒœแƒšแƒแƒ˜แƒœ, แƒ˜แƒกแƒ” แƒฎแƒแƒ–แƒ’แƒแƒ แƒ”แƒจแƒ” แƒ แƒ”แƒŸแƒ˜แƒ›แƒจแƒ˜.
แƒšแƒ”แƒžแƒขแƒแƒžแƒ”แƒ‘แƒ˜ แƒ“แƒ แƒ™แƒแƒ›แƒžแƒ˜แƒฃแƒขแƒ”แƒ แƒ”แƒ‘แƒ˜
Google Play-แƒจแƒ˜ แƒจแƒ”แƒซแƒ”แƒœแƒ˜แƒšแƒ˜ แƒแƒฃแƒ“แƒ˜แƒแƒฌแƒ˜แƒ’แƒœแƒ”แƒ‘แƒ˜แƒก แƒ›แƒแƒกแƒ›แƒ”แƒœแƒ แƒ—แƒฅแƒ•แƒ”แƒœแƒ˜ แƒ™แƒแƒ›แƒžแƒ˜แƒฃแƒขแƒ”แƒ แƒ˜แƒก แƒ•แƒ”แƒ‘-แƒ‘แƒ แƒแƒฃแƒ–แƒ”แƒ แƒ˜แƒก แƒ’แƒแƒ›แƒแƒงแƒ”แƒœแƒ”แƒ‘แƒ˜แƒ— แƒจแƒ”แƒ’แƒ˜แƒซแƒšแƒ˜แƒแƒ—.
แƒ”แƒšแƒฌแƒแƒ›แƒ™แƒ˜แƒ—แƒฎแƒ•แƒ”แƒšแƒ”แƒ‘แƒ˜ แƒ“แƒ แƒกแƒฎแƒ•แƒ แƒ›แƒแƒฌแƒงแƒแƒ‘แƒ˜แƒšแƒแƒ‘แƒ”แƒ‘แƒ˜
แƒ”แƒšแƒ”แƒฅแƒขแƒ แƒแƒœแƒฃแƒšแƒ˜ แƒ›แƒ”แƒšแƒœแƒ˜แƒก แƒ›แƒแƒฌแƒงแƒแƒ‘แƒ˜แƒšแƒแƒ‘แƒ”แƒ‘แƒ–แƒ” แƒฌแƒแƒกแƒแƒ™แƒ˜แƒ—แƒฎแƒแƒ“, แƒ แƒแƒ’แƒแƒ แƒ˜แƒชแƒแƒ Kobo eReaders, แƒ—แƒฅแƒ•แƒ”แƒœ แƒฃแƒœแƒ“แƒ แƒฉแƒแƒ›แƒแƒขแƒ•แƒ˜แƒ แƒ—แƒแƒ— แƒคแƒแƒ˜แƒšแƒ˜ แƒ“แƒ แƒ’แƒแƒ“แƒแƒ˜แƒขแƒแƒœแƒแƒ— แƒ˜แƒ’แƒ˜ แƒ—แƒฅแƒ•แƒ”แƒœแƒก แƒ›แƒแƒฌแƒงแƒแƒ‘แƒ˜แƒšแƒแƒ‘แƒแƒจแƒ˜. แƒ“แƒแƒฎแƒ›แƒแƒ แƒ”แƒ‘แƒ˜แƒก แƒชแƒ”แƒœแƒขแƒ แƒ˜แƒก แƒ“แƒ”แƒขแƒแƒšแƒฃแƒ แƒ˜ แƒ˜แƒœแƒกแƒขแƒ แƒฃแƒฅแƒชแƒ˜แƒ”แƒ‘แƒ˜แƒก แƒ›แƒ˜แƒฎแƒ”แƒ“แƒ•แƒ˜แƒ— แƒ’แƒแƒ“แƒแƒ˜แƒขแƒแƒœแƒ”แƒ— แƒคแƒแƒ˜แƒšแƒ”แƒ‘แƒ˜ แƒ›แƒฎแƒแƒ แƒ“แƒแƒญแƒ”แƒ แƒ˜แƒš แƒ”แƒšแƒฌแƒแƒ›แƒ™แƒ˜แƒ—แƒฎแƒ•แƒ”แƒšแƒ”แƒ‘แƒ–แƒ”.