Haar Series and Linear Operators

┬╖
┬╖ Mathematics and Its Applications рокрпБродрпНродроХроорпН 367 ┬╖ Springer Science & Business Media
4.0
2 роХро░рпБродрпНродрпБроХро│рпН
рооро┐ройрпНрокрпБродрпНродроХроорпН
224
рокроХрпНроХроЩрпНроХро│рпН
ро░рпЗроЯрпНроЯро┐роЩрпНроХрпБроХро│рпБроорпН роХро░рпБродрпНродрпБроХро│рпБроорпН роЪро░ро┐рокро╛ро░рпНроХрпНроХрокрпНрокроЯрпБро╡родро┐ро▓рпНро▓рпИ┬ароорпЗро▓рпБроорпН роЕро▒ро┐роХ

роЗроирпНрод рооро┐ройрпНрокрпБродрпНродроХродрпНродрпИрокрпН рокро▒рпНро▒ро┐

In 1909 Alfred Haar introduced into analysis a remarkable system which bears his name. The Haar system is a complete orthonormal system on [0,1] and the Fourier-Haar series for arbitrary continuous function converges uniformly to this function.
This volume is devoted to the investigation of the Haar system from the operator theory point of view. The main subjects treated are: classical results on unconditional convergence of the Haar series in modern presentation; Fourier-Haar coefficients; reproducibility; martingales; monotone bases in rearrangement invariant spaces; rearrangements and multipliers with respect to the Haar system; subspaces generated by subsequences of the Haar system; the criterion of equivalence of the Haar and Franklin systems.
Audience: This book will be of interest to graduate students and researchers whose work involves functional analysis and operator theory.

роородро┐рокрпНрокрпАроЯрпБроХро│рпБроорпН роородро┐рокрпНрокрпБро░рпИроХро│рпБроорпН

4.0
2 роХро░рпБродрпНродрпБроХро│рпН

роЗроирпНрод рооро┐ройрпНрокрпБродрпНродроХродрпНродрпИ роородро┐рокрпНрокро┐роЯрпБроЩрпНроХро│рпН

роЙроЩрпНроХро│рпН роХро░рпБродрпНродрпИрокрпН рокроХро┐ро░ро╡рпБроорпН.

рокроЯро┐рокрпНрокродрпБ роХрпБро▒ро┐родрпНрод родроХро╡ро▓рпН

ро╕рпНрооро╛ро░рпНроЯрпНроГрокрпЛройрпНроХро│рпН рооро▒рпНро▒рпБроорпН роЯрпЗрокрпНро▓рпЖроЯрпНроХро│рпН
Android рооро▒рпНро▒рпБроорпН iPad/iPhoneроХрпНроХро╛рой Google Play рокрпБроХрпНро╕рпН роЖрокрпНро╕рпИ роиро┐ро▒рпБро╡рпБроорпН. роЗродрпБ родро╛ройро╛роХро╡рпЗ роЙроЩрпНроХро│рпН роХрогроХрпНроХрпБроЯройрпН роТродрпНродро┐роЪрпИроХрпНроХрпБроорпН рооро▒рпНро▒рпБроорпН роОроЩрпНроХро┐ро░рпБроирпНродро╛ро▓рпБроорпН роЖройрпНро▓рпИройро┐ро▓рпН роЕро▓рпНро▓родрпБ роЖроГрокрпНро▓рпИройро┐ро▓рпН рокроЯро┐роХрпНроХ роЕройрпБроородро┐роХрпНроХрпБроорпН.
ро▓рпЗрокрпНроЯро╛рокрпНроХро│рпН рооро▒рпНро▒рпБроорпН роХроорпНрокрпНропрпВроЯрпНроЯро░рпНроХро│рпН
Google Playропро┐ро▓рпН ро╡ро╛роЩрпНроХро┐роп роЖроЯро┐ропрпЛ рокрпБродрпНродроХроЩрпНроХро│рпИ роЙроЩрпНроХро│рпН роХроорпНрокрпНропрпВроЯрпНроЯро░ро┐ройрпН ро╡ро▓рпИ роЙро▓ро╛ро╡ро┐ропро┐ро▓рпН роХрпЗроЯрпНроХро▓ро╛роорпН.
рооро┐ройрпНро╡ро╛роЪро┐рокрпНрокрпБ роЪро╛родройроЩрпНроХро│рпН рооро▒рпНро▒рпБроорпН рокро┐ро▒ роЪро╛родройроЩрпНроХро│рпН
Kobo роЗ-ро░рпАроЯро░рпНроХро│рпН рокрпЛройрпНро▒ роЗ-роЗроЩрпНроХрпН роЪро╛родройроЩрпНроХро│ро┐ро▓рпН рокроЯро┐роХрпНроХ, роГрокрпИро▓рпИрокрпН рокродро┐ро╡ро┐ро▒роХрпНроХро┐ роЙроЩрпНроХро│рпН роЪро╛родройродрпНродро┐ро▒рпНроХрпБ рооро╛ро▒рпНро▒ро╡рпБроорпН. роЖродро░ро┐роХрпНроХрокрпНрокроЯрпБроорпН роЗ-ро░рпАроЯро░рпНроХро│рпБроХрпНроХрпБ роГрокрпИро▓рпНроХро│рпИ рооро╛ро▒рпНро▒, роЙродро╡ро┐ роорпИропродрпНродро┐ройрпН ро╡ро┐ро░ро┐ро╡ро╛рой ро╡ро┤ро┐роорпБро▒рпИроХро│рпИрокрпН рокро┐ройрпНрокро▒рпНро▒ро╡рпБроорпН.

родрпКроЯро░рпИ ро╡ро░ро┐роЪрпИрокрпНрокроЯрпБродрпНродрпБродро▓рпН

роорпЗро▓рпБроорпН I. Novikov роОро┤рпБродро┐ропро╡рпИ

роЗродрпИрокрпН рокрпЛройрпНро▒ рооро┐ройрпНрокрпБродрпНродроХроЩрпНроХро│рпН