Group Theory

· IntroBooks
1.0
1 ulasan
e-Buku
40
Halaman
Layak
Rating dan ulasan tidak disahkan  Ketahui Lebih Lanjut

Perihal e-buku ini

 By many expert mathematicians, group theory is often addressed as a central part of mathematics. It finds its origins in geometry, since geometry describes groups in a detailed manner. The theory of polynomial equations also describes the procedure and principals of associating a finite group with any polynomial equation. This association is done in such a way that makes the group to encode information that can be used to solve the equations. This equation theory was developed by Galois. Finite group theory faced a number of changes in near past times as a result of classification of finite simple groups. The most important theorem when practicing group theory is theorem by Jordan holder. This theorem shows how any finite group is a combination of multiple finite simple groups.

Group theory is a term that is mainly used fields related to mathematics such as algebraic calculations. In abstract algebra, groups are referred as algebraic structures. Other terms of algebraic theories, such as rings, fields and vector spaces are also seen as group. Of course with some additional operations and axioms, mathematicians accept them as a group. The methods and procedures of group theory effect many parts and concepts of mathematics as well as algebra on a large scale. Linear algebraic groups and lie groups are two main branches or say categories of group theory that have advanced enough to be considered as a subject in their own perspectives.

Rating dan ulasan

1.0
1 ulasan

Berikan rating untuk e-Buku ini

Beritahu kami pendapat anda.

Maklumat pembacaan

Telefon pintar dan tablet
Pasang apl Google Play Books untuk Android dan iPad/iPhone. Apl ini menyegerak secara automatik dengan akaun anda dan membenarkan anda membaca di dalam atau luar talian, walau di mana jua anda berada.
Komputer riba dan komputer
Anda boleh mendengar buku audio yang dibeli di Google Play menggunakan penyemak imbas web komputer anda.
eReader dan peranti lain
Untuk membaca pada peranti e-dakwat seperti Kobo eReaders, anda perlu memuat turun fail dan memindahkan fail itu ke peranti anda. Sila ikut arahan Pusat Bantuan yang terperinci untuk memindahkan fail ke e-Pembaca yang disokong.